Sandwich panels with layered graded aluminum honeycomb cores under blast loading

2017 ◽  
Vol 173 ◽  
pp. 242-254 ◽  
Author(s):  
Shiqiang Li ◽  
Xin Li ◽  
Zhihua Wang ◽  
Guiying Wu ◽  
Guoxing Lu ◽  
...  
2017 ◽  
Vol 21 (3) ◽  
pp. 838-864 ◽  
Author(s):  
Yuansheng Cheng ◽  
Tianyu Zhou ◽  
Hao Wang ◽  
Yong Li ◽  
Jun Liu ◽  
...  

The ANSYS/Autodyn software was employed to investigate the dynamic responses of foam-filled corrugated core sandwich panels under air blast loading. The panels were assembled from metallic face sheets and corrugated webs, and PVC foam inserts with different filling strategies. To calibrate the proposed numerical model, the simulation results were compared with experimental data reported previously. The response of the panels was also compared with that of the empty (unfilled) sandwich panels. Numerical results show that the fluid–structure interaction effect was dominated by front face regardless of the foam fillers. Foam filling would reduce the level of deformation/failure of front face, but did not always decrease the one of back face. It is found that the blast performance in terms of the plastic deflections of the face sheets can be sorted as the following sequence: fully filled hybrid panel, front side filled hybrid panel, back side filled hybrid panel, and the empty sandwich panel. Investigation into energy absorption characteristic revealed that the front face and core web provided the most contribution on total energy absorption. A reverse order of panels was obtained when the maximization of total energy dissipation was used as the criteria of blast performance.


2004 ◽  
Vol 35 (6-8) ◽  
pp. 673-683 ◽  
Author(s):  
Liviu Librescu ◽  
Sang-Yong Oh ◽  
Joerg Hohe

2015 ◽  
Vol 4 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Shuliang Cheng ◽  
Xuya Zhao ◽  
Bo Xiao ◽  
Yajun Xin

2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Chang Qi ◽  
Shu Yang ◽  
Dong Wang ◽  
Li-Jun Yang

The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson’s ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.


2016 ◽  
Vol 20 (7) ◽  
pp. 861-884 ◽  
Author(s):  
QN Zhang ◽  
XW Zhang ◽  
GX Lu ◽  
D Ruan

To study the protection property of aluminum alloy sandwich panels with honeycomb cores under the attack of bullets or debris, quasi-static perforation, and ballistic impact tests were conducted, in which the thicknesses of the face sheet and core were 0.5–2.0 and 12.7 mm, respectively, while projectiles with diameter 7.5 mm and impact velocity 50–220 m/s were employed. Based on the experiments, the influences of impact velocity, face sheet thickness, core density as well as the nose shape of the projectiles were investigated. The results showed that in the impact tests, the sandwich panels dissipated much more energy than those in quasi-static perforation tests, and the energy absorption and ballistic limit of the sandwich panels increased with the increase of impact velocity. The influence of face sheet thickness was more remarkable than the core density, which was due to the relative density of honeycomb is too small. Although the increase of core density could induce the increase of energy absorption, this effect is more effective for thinner face sheet. Moreover, under the same impact velocity about 200 m/s and face sheet thickness 1.0 mm, the ballistic limit for conical-nosed projectile is highest, while it is lowest for flat-nosed projectile.


2020 ◽  
Vol 10 (24) ◽  
pp. 9061
Author(s):  
Kristoffer Aune Brekken ◽  
Aase Reyes ◽  
Torodd Berstad ◽  
Magnus Langseth ◽  
Tore Børvik

Sandwich panels have proven to be excellent energy absorbents. Such panels may be used as a protective structure in, for example, façades subjected to explosions. In this study, the dynamic response of sandwich structures subjected to blast loading has been investigated both experimentally and numerically, utilizing a shock tube facility. Sandwich panels made of aluminium skins and a core of extruded polystyrene (XPS) with different densities were subjected to various blast load intensities. Low-velocity impact tests on XPS samples were also conducted for validation and calibration of a viscoplastic extension of the Deshpande-Fleck crushable foam model. The experimental results revealed a significant increase in blast load mitigation for sandwich panels compared to skins without a foam core, and that the back-skin deformation and the core compression correlated with the foam density. Numerical models of the shock tube tests were created using LS-DYNA, incorporating the new viscoplastic formulation of the foam material. The numerical models were able to capture the trends observed in the experimental tests, and good quantitative agreement between the experimental and predicted responses was in general obtained. One aim of this study is to provide high-precision experimental data, combined with a validated numerical modelling strategy, that can be used in simulation-based optimisation of sandwich panels exposed to blast loading.


Sign in / Sign up

Export Citation Format

Share Document