Mechanical properties of low-velocity impact damaged carbon fibre reinforced polymer laminates: Effects of drilling holes for resin-injection repair

2020 ◽  
Vol 235 ◽  
pp. 111806 ◽  
Author(s):  
W.L. Lai ◽  
H. Saeedipour ◽  
K.L. Goh
2022 ◽  
pp. 002199832110652
Author(s):  
Rochele Pinto ◽  
Gediminas Monastyreckis ◽  
Hamza Mahmoud Aboelanin ◽  
Vladimir Spacek ◽  
Daiva Zeleniakiene

This article presents the possibility of strength improvement and energy absorption of carbon fibre reinforced polymer composites by matrix modification. In this study, the mechanical properties of bisphenol-A epoxy matrix and carbon fibre reinforced polymer composites were modified with four different wt.% of star-shaped polymer n-butyl methacrylate (P n-BMA) block glycidyl methacrylate (PGMA). The tensile strength of the epoxy with 1 wt.% star-shaped polymer showed 128% increase in comparison to unmodified epoxy samples. Two different wt.% were then used for the modification of carbon fibre-reinforced polymer composite samples. Tensile tests and low-velocity impact tests were conducted for characterising modified samples. Tensile test results performed showed a slight improvement in the tensile strength and modulus of the composite. Low-velocity impact tests showed that addition of 1 wt.% star-shaped polymer additives increase composite energy absorption by 53.85%, compared to pure epoxy composite specimens. Scanning electron microscopy (SEM) analysis of post-impact specimens displays fracture modes and bonding between the matrix and fibre in the composites. These results demonstrate the potential of a novel star-shaped polymer as an additive material for automotive composite parts, where energy absorption is significant.


2017 ◽  
Vol 52 (11) ◽  
pp. 1567-1576 ◽  
Author(s):  
Yi Zhang ◽  
Jonathan Stringer ◽  
Alma Hodzic ◽  
Patrick J Smith

It has previously been demonstrated that inkjet-printed thermoplastic microphases are capable of producing a significant increase in mode I interlaminar fracture toughness ( G Ic) in carbon fibre-reinforced polymer with no significant reduction in other mechanical properties or increase in parasitic weight. In this work, the evolution of the microphase structure during processing and how this is influenced by the chosen printing parameters were investigated. Samples were prepared that enabled monitoring of the microphases during all steps of fabrication, with the thermoplastic polymer found to form a discrete spherical shape due to surface energy minimisation. Based upon the morphology and properties of the thermoplastic microphases, it was hypothesised that the increased toughness was due to a combination of crack deflection and plastic deformation of the microphases. Samples were produced for the double cantilever beam fracture toughness testing using the same printing conditions, and both G Ic values and scanning electron microscopy of the fracture surface supported the proposed hypothesis. The feasibility of selective toughening is also demonstrated, which presents potential to tailor the mechanical properties of the carbon fibre-reinforced polymer spatially.


Sign in / Sign up

Export Citation Format

Share Document