The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash

2008 ◽  
Vol 22 (11) ◽  
pp. 2269-2275 ◽  
Author(s):  
Harun Tanyildizi ◽  
Ahmet Coskun
2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


2013 ◽  
Vol 357-360 ◽  
pp. 1062-1065 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Song Hui Yun ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This paper presents the results of an experimental study on the compressive strength, splitting tensile strength and modulus of elasticity characteristics of high performance concrete. These tests were carried out to evaluate the mechanical properties of HPC for up to 7 and 28 days. Mixtures were prepared with water to binder ratio of 0.40. Two mixtures were containing fly ash at 25%, silica fume at 5% cement replacement, respectively. Another mixture was contains blast furnace slag and fly ash at 25%. Three standard 100¥a200 cylinder specimens were prepared. HPC showed improvement in the compressive strength and splitting tensile strength when ordinary Portland cement was replaced with silica fume. Compare with specimens FA25 and BS25FA25, specimen SF5 showed much more modulus of elasticity. It shows that the use of the blast furnace slag of 25% and fly ash of 25% cement replacement has caused a small increase in compressive strength and splitting tensile strength and modulus of elasticity compared to the only use of fly ash of 25% at 28days. The results indicated that the use of blast furnace slag or silica fume provided the good performance compare to fly ash when the mechanical properties of the high performance concretes were taken into account.


2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


2021 ◽  
Vol 30 (3) ◽  
pp. 464-476
Author(s):  
Haider Owaid ◽  
Haider Al-Baghdadi ◽  
Muna Al-Rubaye

Large quantities of paper and wood waste are generated every day, the disposal of these waste products is a problem because it requires huge space for their disposal. The possibility of using these wastes can mitigate the environmental problems related to them. This study presents an investigation on the feasibility of inclusion of waste paper ash (WPA) or wood ash (WA) as replacement materials for fly ash (FA) class F in preparation geopolymer concrete (GC). The developed geopolymer concretes for this study were prepared at replacement ratios of FA by WPA or WA of 25, 50, 75 and 100% in addition to a control mix containing 100% of FA. Sodium hydroxide (NaOH) solutions and sodium silicate (Na2SiO3) are used as alkaline activators with 1M and 10M of sodium hydroxide solution.The geopolymer concretes have been evaluated with respect to the workability, the compressive strength, splitting tensile strength and flexural strength. The results indicated that there were no significant differences in the workability of the control GC mix and the developed GC mixes incorporating WPA or WA. Also, the results showed that, by incorporating of 25–50% PWA or 25% WA, the mechanical properties (compressive strength, splitting tensile strength and flexural strength) of GC mixes slightly decreased. While replacement with 75–100% WPA or with 50–100% WA has reduced these mechanical properties of GC mixes. As a result, there is a feasibility of partial replacement of FA by up to 50% WPA or 25% WA in preparation of the geopolymer concrete.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6158
Author(s):  
Cătălina Mihaela Grădinaru ◽  
Adrian Alexandru Șerbănoiu ◽  
Radu Muntean ◽  
Bogdan Vasile Șerbănoiu

The effects of the fly ash and of the sunflower stalks and corn cobs within a cement-matrix composite were studied under the aspects of density, compressive strength, splitting tensile strength, elasticity modulus, and resistance to repeated freeze-thaw cycles. In the research were developed 20 recipes of cement-based composite, including the reference composite. Fly ash was used as partial cement replacement (10, 20 and 30% by volume), and the vegetal aggregates made by corn cobs and sunflower stalks as partial replacement of the mineral aggregates (25 and 50% by volume). The study results revealed that a lightweight composite can be obtained with 50% of vegetal aggregates, and the fly ash, no matter its percentage, enhanced the compressive strength and splitting tensile strength of the compositions with 50% of sunflower aggregates and the freeze-thaw resistance of all compositions with sunflower stalks.


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Slamet Widodo ◽  
Iman Satyarno ◽  
Sri Tudjono

Lightweight concrete application in construction field is growing rapidly in these recent years due to its advantages over ordinary concrete. In this paper, pumice breccia which can be found abundantly in Indonesia is proposed to be utilized as the coarse aggregate. In spite of its benefits, lightweight concrete exhibits more brittle characteristics and lower tensile strength compared with normal concrete. On the other hand, fiber addition into concrete has become widely used to improve its tensile properties. Furthermore, the utilization of hybrid fiber in a suitable combination may potentially improve the mechanical properties of concrete. This paper experimentally examines the effects of hybrid polypropylene-steel fiber addition on some hardened properties of pumice breccia aggregate lightweight concrete. Five groups of test specimens with fixed volume fraction of polypropylene fiber combined with different amounts of steel fiber were added in concrete to investigate the density, compressive strength, modulus of elasticity, splitting tensile strength, and the modulus of rupture of the concrete mixtures. Test results indicate that hybrid fiber addition leads to significant improvement to the compressive strength, modulus of elasticity, splitting tensile strength, and the modulus of rupture of the pumice breccia lightweight aggregate concrete and meet the specification for structural purposes.


2011 ◽  
Vol 243-249 ◽  
pp. 5067-5070 ◽  
Author(s):  
Fu Ping Jia ◽  
Yong Cheng ◽  
Yi Bing Sun ◽  
Yin Yu Wang ◽  
Hao Sun

This paper presents the results of the splitting tensile strength of high fly ash content concrete (HFCC) after high temperature and analysis the degraded rules of the residual splitting strength subjected to high temperature and the replacements of cement by fly ash. The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and were tested after exposure to high temperature 250, 450, 550 and 650°C and room temperature respectively, compared with ordinary Portland cement concrete. The results showed that the splitting tensile strength sensitively decreased with the high temperature increased. Furthermore, the presence of fly ash was effective for improvement of the relative strength. The relative residual splitting strength of fly ash concrete was higher than those of ordinary Portland cement concrete except 30% fly ash replacement. Based on the experiments results, the alternating simulation formula to determine the relationship among relative residual strength, high temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after high temperature.


2016 ◽  
Vol 677 ◽  
pp. 138-143
Author(s):  
Romana Lovichová ◽  
Pavel Padevět ◽  
Jindřich Fornůsek

This paper describes influence of exposure to high temperatures on material properties of cement paste with addition of fly ash. The properties of cement pastes are significant to the assumption behaviour of concrete and concrete structures. In the cement paste containing fly ash, the effect of high temperature up to 600 ° C causes the changes of content in physically bound water and the change in the material structure. The results of research indicate changes that are reflected in the material properties of the cement paste as compressive strength, tensile strength in bending.


2011 ◽  
Vol 346 ◽  
pp. 26-29 ◽  
Author(s):  
Hong Wei Wang

A designed experimental study has been conducted to investigate the effect of the fiber fraction of polypropylene fiber on the mechanical properties of concrete containing fly ash, a large number of experiments have been carried out in this study. The mechanical properties include compressive strength, splitting tensile strength and compressive modulus of elasticity. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of action of polypropylene fiber on these mechanical properties has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and splitting tensile strength, and the modulus of elasticity of concrete containing fly ash decrease gradually with the increase of fiber volume fraction with appropriate content.


Sign in / Sign up

Export Citation Format

Share Document