scholarly journals Pull-out behaviour of glass-fibre reinforced polymer perforated plate connectors embedded in concrete. Part II: Prediction of load carrying capacity

2018 ◽  
Vol 169 ◽  
pp. 142-164 ◽  
Author(s):  
Rodrigo Lameiras ◽  
Joaquim A.O. Barros ◽  
Isabel B. Valente ◽  
José Xavier ◽  
Miguel Azenha
2019 ◽  
Vol 53 (18) ◽  
pp. 2555-2567 ◽  
Author(s):  
Weena Lokuge ◽  
Rajab Abousnina ◽  
Nilupa Herath

This research paper presents the results of an experimental investigation on the axial compressive behaviour of 24 geopolymer concrete-filled glass fibre-reinforced polymer tubes. The test variables considered are the compressive strength of geopolymer concrete (30 MPa and 35 MPa) and the shape of the cross section (square, circular and rectangular). All the glass fibre-reinforced polymer tubes had the same amount of fibres and similar fibre orientation together with the same aspect ratio. The failure of the square and rectangular columns initiated with the splitting of the corners and resulted in a lower load-carrying capacity compared to the circular columns whose failure was initiated by the crushing of glass fibre-reinforced polymer tube followed by the separation of glass fibre-reinforced polymer tube into strips. It can be concluded that axial load-carrying capacity of square and rectangular sections can be improved by a concrete filler with higher compressive strength. Adopted finite element analysis to simulate the behaviour of the columns is capable of predicting the stress–strain behaviour and the mode of failure.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 101
Author(s):  
Amirah Ali Chew ◽  
Nurul Atikah Seri ◽  
Wan Nur Syazni Wan Shaari ◽  
Mohd Hanafie Yasin ◽  
Rohana Hassan

Generally, the use of timber mainly focuses on simple structures or structures that can take small loads. This paper report on tensile resistance of steel dowelled timber connection wrapped with glass fibre reinforced polymer (GFRP). It involved experimental work in laboratory designed to determine the tensile strength behaviour for half-lap timber connections with steel dowel as the mechanical    fasteners. Bintangor species representing strength group 5 and Yellow Meranti species representing strength group 6 were tested in the conditions of with and without the GFRP wrapping. The performances of the connections were observed using the European Yield Model (EYM) as the guideline. The EYM theory is generally used to determine the load carrying capacity of timber-to-timber, panel-to-timber and steel-to-timber connections, reflecting all possible modes of failures. All half-lap connection members were tested at the rate     0.0006 mm/min using the universal testing machine. As a result, it was found that the steel-dowelled half-lap timber connection with GFRP wrapping performed better than the timber connection without the wrapping. The ultimate load of GFRP wrapped connections made of Bintangor and Yellow Meranti species were found increased at 17% and 44% higher compared to the connection without the GFRP wrapping accordingly.  


2007 ◽  
Vol 34 (3) ◽  
pp. 389-402 ◽  
Author(s):  
Shamim A Sheikh ◽  
S A.D Jaffry ◽  
Ciyan Cui

An investigation was conducted to study the behaviour of full-scale concrete-filled glass-fibre-reinforced-polymer (GFRP) shells under concentric compression. The main objective was to assess the suitability of prefabricated GFRP shells for stay-in-place formwork and confining reinforcement for columns. Seventeen columns, 356 mm in diameter and 1524 mm long were tested. The nominal target concrete compressive strength at 28 d was 30 MPa. Variables examined included number of GFRP layers, fibre orientation, and amount of longitudinal and lateral steel. Confinement by GFRP shells resulted in concrete response that displayed increased strength and associated strain followed by a ductile descending branch. Fibres in the longitudinal direction improved the load-carrying capacity of the columns, but the increase was less than the capacity of the fibres determined from the tension tests. Glass-fibre-reinforced-polymer shells also eliminate the need for closely spaced confinement steel, which should improve the quality of construction. In addition to ease of construction, GFRP shells provide protection against environmental effects, thus helping to reduce life cycle costs.Key words: columns, confinement, stay-in-place formwork, strength, ductility, energy capacity, earthquake, seismic resistance, lateral reinforcement, glass-fibre-reinforced-polymer (GFRP) shell.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Prasanna Nagasai B ◽  
Srikanth S ◽  
Tarun D

This paper describes the design and experimental analysis of composite leaf spring made of glass fibre reinforced polymer. The main aim is to compare the load-carrying capacity, stiffness and weight savings of composite leaf spring with that of steel leaf spring. The design constraints are stress and deflection. The dimensions of an existing conventional steel leaf spring of a light commercial vehicle were considered for the present work. A traditional composite multi-leaf spring was fabricated with the same dimensions using E- Glass/Epoxy unidirectional laminates. Static analysis of 2D model of conventional leaf spring has also been performed using ANSYS 10 and compared with experimental results. Finite element analysis with a full load on the 3-D model of composite multileaf spring was performed using ANSYS, and the analytical results were compared with experimental results


Author(s):  
Inês C. Rosa ◽  
João P. Firmo ◽  
João R. Correia ◽  
P. Mazzuca

<p>This paper presents experimental investigations on the bond behaviour between concrete and glass fibre reinforced polymer (GFRP) rebars at moderately elevated temperatures. Pull-out tests were performed on two types of ribbed GFRP rebars, embedded in concrete cylinders, from ambient temperature up to 300 °C; in these tests, the influence of the rebars’ diameter (8 mm <i>vs. </i>12 mm) was also investigated. Specimens were first heated up to the predefined temperature (measured at the GFRP-concrete interface) and then loaded up to failure. The results obtained confirmed that the stiffness and strength of the GFRP rebars-concrete interface suffer significant reductions with temperature; results were also compared with those obtained in a similar experimental campaign performed by the authors, in which sand-coated GFRP rebars were used: this comparison showed that the bond strength of ribbed rebars is significantly less affected by temperature than that of sand-coated ones.</p>


2016 ◽  
Vol 857 ◽  
pp. 136-141
Author(s):  
P. Gajalakshmi ◽  
S. Aravind ◽  
P. Soundarapandian

Concrete in-filled steel tube (CIFST) columns are mainly used as structural members in buildings located in seismic zones. CIFST columns prone to buckling and technique is required to control the buckling of concrete filled steel tubes when they are subjected to cycles of loading. In this work, CIFST columns wrapped with fibre reinforced polymer laminates (FRPL) to prevent the local buckling. Experimental and analytical study of CIFST columns externally wrapped with FRPL have been conducted. Theoretical study is also conducted to find the ultimate load carrying capacity of CIFST columns. The parameters involved in this investigation are type of fibre and shape of the steel tube. The CIFST columns are tested under lateral loading to determine the number of cycles to failure and energy absorption capacity and to observe the hysteresis behaviour. The analytical study comprises of finite element modeling of CIFST columns wrapped with FRPL. The results obtained from the experimental investigation and finite element model are compared. The results revealed that FRPL wrapped circular CIFST columns have higher load carrying capacity and energy absorption capacity and exhibit ductile behavior when compared to CIFST columns.


Sign in / Sign up

Export Citation Format

Share Document