Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods

2018 ◽  
Vol 172 ◽  
pp. 696-705 ◽  
Author(s):  
M. Glória Gomes ◽  
I. Flores-Colen ◽  
F. da Silva ◽  
M. Pedroso
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1351
Author(s):  
Marzena Kurpińska ◽  
Jarosław Karwacki ◽  
Artur Maurin ◽  
Marek Kin

The implementation of low-energy construction includes aspects related to technological and material research regarding thermal insulation. New solutions are sought, firstly, to reduce heat losses and, secondly, to improve the environment conditions in isolated rooms. The effective heat resistance of insulating materials is inversely proportional to temperature and humidity. Cement composites filled with lightweight artificial aggregates may be a suitable material. Selecting a proper method for measuring the thermal conductivity of concrete is important to achieve accurate values for calculating the energy consumption of buildings. The steady state and transient methods are considered the two main thermal conductivity measurement approaches. Steady state is a constant heat transfer, whereby the temperature or heat flow is time independent. In the transient method, temperature changes over time. Most researchers have measured the conductivity of cement-based materials based on transient methods. The availability and cost of equipment, time for experimental measurements and measurement ability for moist specimens may be some of the reasons for using this method. However, considering the accuracy of the measurements, the steady state methods are more reliable, especially for testing dry materials. Four types of composites were investigated that differed in filler: natural aggregate, sintered fly ash filler, sintered clay and granular foam glass aggregate. The method of preparing the samples for testing is especially important for the obtained results. The samples, with a specific surface roughness, will show a lower coefficient of thermal conductivity by 20–30%; therefore, the selection of the type of contact layer between the plate of the measuring device and the sample is of particular importance.


2003 ◽  
Author(s):  
Ming-Tsung Sun ◽  
Chin-Hsiang Chang

The newly developed method for steady-state thermal conductivity measurement with single constant temperature region is experimentally proven accurate within 3% compared with the guarded hot plate method. The method is suitable for in-situ non-destructive evaluation of insulation materials. However, there are factors that affect the accuracy of measurement yet to be closely studied. In this paper, we present a theoretical analysis of the accuracy of the method by varying the relative size of the heating plate, the thickness of the test specimen, the location of the temperature sensors at the lower temperature side, and different thermal convection coefficients for the free convection boundary condition. In the study, the temperature distribution in a homogeneous material is solved numerically. The thermal conductivity is evaluated from the temperature distribution and the heat flux measured according to the method. By comparing the results with that given in the numerical model, the accuracy can be expressed as functions of the three variables in the analysis. The results are consistent with that of the experiment. They are considered beneficial in providing information to the optimal design and the measurement correction of a commercialized apparatus using the method.


Sign in / Sign up

Export Citation Format

Share Document