Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy – A high temperature electrochemical sensor study

2013 ◽  
Vol 76 ◽  
pp. 390-402 ◽  
Author(s):  
Naing Naing Aung ◽  
Xingbo Liu
Author(s):  
Yacheng Liu ◽  
Weidong Fan ◽  
Xiang Zhang ◽  
Naixing Wu

Chlorine is a harmful constituent in coal, contributing to severe high temperature corrosion on the super-heater and re-heater tubes in utility boiler firing high-chlorine coal (more than 0.3 wt.%). Characteristics of the corrosion contain not only the formed products on the metal surface, but also intergranular attack inner the alloy, resulting in great potential safety hazard and economic loss. The prevailing Cl-related mechanisms of high temperature corrosion involve active oxidation and fluxing, which mean both corrosive elements in the flue gas and deposits on the boiler metal surface can accelerate the corrosion. Cl2 as a catalyst in active oxidation can be released by sulfuration of alkali metal chlorides or reactivity by alkali metal chlorides with chromium/chromium oxide and iron/iron oxide or oxidation of HCl. However, the formation of low-melting eutectics (such as NaCl-Na2CrO4) in mechanism of fluxing can be an induction of severe corrosion because the rate of molten corrosion is much higher than chemical corrosion. Lab-scale experiments simulating the flue gas species, temperature gradient from hot flue gas (950 °C) to cold metal (610 °C), and deposit (four various Cl-containing coal ash) on the specimens were conducted in a tube furnace to investigate the corrosion of three common boiler steels (12Cr1MoVG, T91, TP347H). Furthermore, with the aid of the scanning electronic microscope associated with energy dispersive spectrometer (SEM-EDX) and X-ray diffraction instrument (XRD), the appearance and microstructure, the element contents, and composition of corrosion products on the specimens after corrosion have been analyzed. For high-chlorine coal, there existed white crystal on the surface of specimens (T91, TP347H) after corrosion test, and the XRD result showed NaCl, which can be explained by evaporation-condensation mechanism. However, no white crystal was detected for 12Cr1MoVG and it can be inferred that thick corrosion product layer with high thermal resistance was formed and 12Cr1MoVG suffered severe degradation. Through comparisons of alloy elements corroded in various oxidizers (Cl2, O2, and S), it can be seen that as the metal temperature increases, the negative value of Gibbs free energy for alloy elements corroded in Cl2 becomes higher, but the value is less corroded in O2 or S. Thus, alloy elements tend to be easier combined with Cl2, and Cl-induced corrosion is aggravated with the temperature increases. Similar results can be obtained by increased equilibrium vapor pressures of metal chlorides, evaporating easily and diffusing towards further to be oxidation. In comparison with high-chlorine coal, the corrosivity of low-chlorine coals on specimens were weak, especially for TP347H characterized with higher contents of Cr and Ni. Furthermore, the higher the ratio of Cl/2S or Cl/Na in the coal ash is, the more severe corrosion the specimens suffer.


Alloy Digest ◽  
2000 ◽  
Vol 49 (10) ◽  

Abstract HR-120 alloy is an alloy designed for thermal processing. It possesses excellent strength, oxidizing hot corrosion resistance, good carburization resistance, and oxidation resistance through 1093 deg C (2000 deg F). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-561. Producer or source: Rolled Alloys.


Alloy Digest ◽  
1994 ◽  
Vol 43 (5) ◽  

Abstract URANUS 52N is a nitrogen-alloyed duplex stainless steel improved in stress-corrosion cracking resistance and with pitting and crevice corrosion resistance better than AISI Type 317L. Applications include handling phosphoric acid contaminated with chlorides and in flue gas desulfurization scrubbers. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-566. Producer or source: Creusot-Marrel.


Alloy Digest ◽  
2004 ◽  
Vol 53 (8) ◽  

Abstract AL 4565 alloy has a high level of austenitizers, which provides the microstructure with a high resistance to sigma formation during welding. The high nitrogen also gives the alloy superior strength among the austenitics. Applications include flue gas desulfurization and handling seawater. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as heat treating and joining. Filing Code: SS-906. Producer or source: Allegheny Ludlum Corporation.


CORROSION ◽  
2010 ◽  
Vol 66 (9) ◽  
pp. 095002-095002-8 ◽  
Author(s):  
K. T. Chiang ◽  
L. Yang

Author(s):  
Junxiang Guo ◽  
Lingling Zhang ◽  
Daqiang Cang ◽  
Liying Qi ◽  
Wenbin Dai ◽  
...  

Abstract In this study, a novel swirl combustion modified device for steel slag was designed and enhanced with the objective of achieving highly efficient and clean coal combustion and also for achieving the whole elements utilization of coal. Coal ash and steel slag were melted in the combustion chamber and subsequently entered the slag chamber. The detrimental substances solidified and formed crystals, which allowed for the comprehensive utilization of the ash and slag. Our experiments mainly aimed to mitigate the formation of NOx, while using the heat and slag simultaneously during the coal combustion without a combustion efficiency penalty. The increase in the device’s energy efficiency and reduction in the NOx emissions are important requirements for industrialization. The experiments were carried out in an optimized swirling combustion device, which had a different structure and various coal feeding conditions in comparison to previously reported devices. The fuel-staged and non-staged combustion experiments were compared under different coal ratios (bitumite:anthracite). For the fuel-staged combustion experiments, the NOx concentration in the flue gas was observed to decrease significantly when the coal ratio of 1:1, an excess air coefficient of 1.2, and a fuel-staged ratio of 15:85 were used. Under these conditions, the flue gas temperature was as high as 1,620°C, while the NOx concentration was as low as 320 mg/m3 at 6 % O2. The air-surrounding-fuel structure that formed in the furnace was very beneficial in reducing the formation of NOx. In comparison to other types of coal burners, the experimental combustion device designed in this study achieved a significant reduction of NOx emissions (approximately 80 %).


1992 ◽  
Vol 114 (2) ◽  
pp. 242-249 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed ◽  
M. Metwally ◽  
M. Pasin

An experimental investigation was conducted to study the ash particle rebound characteristics and the associated erosion behavior of superalloys and aluminide coatings subjected to gas-particle flows at elevated temperature. A three-component LDV system was used to measure the restitution parameters of 15 micron mean diameter coal-ash particles impacting some widely used superalloys and coatings at different angles. The presented results show the variation of the particle restitution ratios with the impingement angle for the coated and uncoated superalloys. The erosion behaviors of INCO-738, MAR 246 and X40 superalloys and protective coatings C, N, RT22 and RT22B also have been investigated experimentally at high temperature using a specially designed erosion tunnel. The erosion results show the effect of velocity, temperature and the impact angle on the erosion rate (weight loss per unit weight of particles). Based on the experimental results of the particle mass effect on both weight losses and erosion rates, the coating lives have been estimated for different particle concentrations.


Sign in / Sign up

Export Citation Format

Share Document