scholarly journals Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents

Author(s):  
Oluwafemi Ogunlalu ◽  
Ifeoluwa Peter Oyekunle ◽  
Kingsley O. Iwuozor ◽  
Abiodun Daniel Aderibigbe ◽  
Ebuka Chizitere Emenike
2009 ◽  
Vol 28 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Hyeon-Yong Lee ◽  
Choong Jeon ◽  
Kyoung-Jae Lim ◽  
Ki-Chan Hong ◽  
Jung-Eun Lim ◽  
...  

Author(s):  
Jyotikusum Acharya ◽  
Upendra Kumar ◽  
P. Mahammed Rafi

Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Agricultural waste materials being economic and ecofriendly due to their unique biochemical composition, availability in abundance, renewable, low in cost and more efficient are seem to be viable option for heavy metal remediation. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. Have affinity for heavy metal ions to form metal complexes or chelates. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni. Rice husk as a low-value agricultural by-product can be made into sorbent materials which are used in heavy metal removal. The mechanism of biosorption process includes chemisorptions, complexation, adsorption on surface, diffusion through pores and ion exchange etc. Agricultural residues are lignocelluloses substances which contain three main structural components: hemicelluloses, cellulose and lignin. Lignocellulosic materials also contain extractives. Generally, three main components have high molecular weights and contribute much mass, while the extractives is of small molecular size, and available in little quantity, which announce in heavy metal removal.


2017 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
M.B. Nicodemus Ujih ◽  
Mohammad Isa Mohamadin ◽  
Milla-Armila Asli ◽  
Bebe Norlita Mohammed

Heavy metal ions contamination has become more serious which is caused by the releasing of toxic water from industrial area and landfill that are very harmful to all living organism especially human and can even cause death if contaminated in small amount of heavy metal concentration. Currently, peoples are using classic method namely electrochemical treatment, chemical oxidation/reduction, chemical precipitation and reverse osmosis to eliminate the metal ions from toxic water. Unfortunately, these methods are costly and not environmentally friendly as compared to bioadsorption method, where agricultural waste is used as biosorbent to remove heavy metals. Two types of agricultural waste used in this research namely oil palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment, the removal efficiency was found to improve. The removal efficiency is examined based on four specification namely dosage, of biosorbent to adsorb four types of metals ion explicitly nickel, lead, copper, and chromium. The research has found that the removal efficiency of MB was lower than OPMF; whereas, the multiple metals ions removal efficiency decreased in the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3725-3731
Author(s):  
Juan Huang ◽  
Weirong Cui ◽  
Ruping Liang ◽  
Li Zhang ◽  
Jianding Qiu

Novel porous BMTTPA–CS–GO nanocomposites are prepared by covalently grafting BMTTPA–CS onto GO surfaces, and used for efficient removal of heavy metal ions from polluted water.


Sign in / Sign up

Export Citation Format

Share Document