Methyl bromide alternatives for nematode and Cyperus control in bell pepper (Capsicum annuum)

2005 ◽  
Vol 24 (10) ◽  
pp. 903-908 ◽  
Author(s):  
James P. Gilreath ◽  
Bielinski M. Santos ◽  
Timothy N. Motis ◽  
Joseph W. Noling ◽  
John M. Mirusso
2004 ◽  
Vol 23 (4) ◽  
pp. 347-351 ◽  
Author(s):  
James P. Gilreath ◽  
Joseph W. Noling ◽  
Bielinski M. Santos

2004 ◽  
Vol 18 (2) ◽  
pp. 341-345 ◽  
Author(s):  
James P. Gilreath ◽  
Bielinski M. Santos

Field trials were conducted to compare the effect of various soil fumigants along with in-bed pebulate and row-middle metribuzin applications on purple nutsedge control and on tomato and bell pepper growth and yield. Treatments consisted of combinations of soil fumigants, pebulate, and metribuzin. Fumigants levels were (1) untreated control, (2) methyl bromide (MBr) + chloropicrin (Pic) (67 + 33%, respectively), (3) Pic, (4) metham, (5) dazomet, and (6) 1,3-dichloropropene (1,3-D) + Pic (83 + 17%, respectively). Pebulate levels were either applied in-bed or not applied. Row middles were either sprayed with metribuzin or untreated. In both crops, purple nutsedge populations were independently influenced by fumigants and pebulate applications, with the highest number of purple nutsedge plants in the untreated control. The addition of pebulate reduced purple nutsedge populations in all treatments. In tomato trials, the yield was affected by fumigants, with the highest losses (53 and 50% reductions in fruit number and weight) observed in the nonfumigated control. In pepper trials, fruit number and weight were individually influenced by fumigants and metribuzin sprayings. Application of metribuzin to row middles increased yields 10% relative to nontreated plots.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 443A-443 ◽  
Author(s):  
Monica Ozores-Hampton ◽  
Phillip A. Stansly ◽  
Thomas A. Obreza

Methyl bromide will be unavailable to conventional vegetable growers in the year 2005, and it cannot be used by organic growers. Chemical alternatives are more expensive and may also be subject to future restrictions. Non-chemical alternatives like solarization and organic amendments are as yet largely unproven but do offer promise of sustainable solutions free of government regulation. The objective of this study was to evaluate the effects of soil-incorporated biosolids and soil solarization on plant growth, yield, and soil fertility. Main plots were a biosolids soil amendment (37 Mg·ha-1 and a non-amended control. Treated main plots had received some type of organic amendment for the previous 6 years. Sub-plots were fumigated with methyl bromide as they had been for 6 years, or non-fumigated. Non-fumigated plots were further split into solarized and non-solarized plots. Bell pepper (Capsicum annuum `X 3R Aladdin') was grown for 8 months. Nitrogen fertilization was reduced to 50% of the recommended rate in the biosolids plots due to expected N mineralization from the biosolids amendment. Plant biomass was higher in the biosolids plots compared with the non-amended plots but there were no differences in marketable pepper yields between biosolids and non-biosolids plots. Plants grown in solarized soil produced lower plant biomass and yields than the methyl bromide and non-fumigated treatments. Soil pH and Mehlich 1-extractable P, K, Ca, Mg, Zn, Mn, Fe, and Cu were higher in biosolids plots than in non-amended control plots. Soil organic matter concentration was 3-fold higher where biosolids were applied compared with non-amended soil. The results suggest that regular organic amendment applications to a sandy Florida soil can increase plant growth and produce similar yields with less inorganic nutrients than are applied in a standard fertilization program. However, methyl bromide and non-fumigated treatments produced higher yields than soil solarization.


2001 ◽  
Vol 20 (7) ◽  
pp. 605-614 ◽  
Author(s):  
T.M Webster ◽  
A.S Csinos ◽  
A.W Johnson ◽  
C.C Dowler ◽  
D.R Sumner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document