scholarly journals Shared Representation of Visual and Auditory Motion Directions in the Human Middle-Temporal Cortex

2020 ◽  
Vol 30 (12) ◽  
pp. 2289-2299.e8 ◽  
Author(s):  
Mohamed Rezk ◽  
Stephanie Cattoir ◽  
Ceren Battal ◽  
Valeria Occelli ◽  
Stefania Mattioni ◽  
...  
2020 ◽  
Vol 32 (10) ◽  
pp. 1896-1923
Author(s):  
Avinash R. Vaidya ◽  
David Badre

Real-life choices often require that we draw inferences about the value of options based on structured, schematic knowledge about their utility for our current goals. Other times, value information may be retrieved directly from a specific prior experience with an option. In an fMRI experiment, we investigated the neural systems involved in retrieving and assessing information from different memory sources to support value-based choice. Participants completed a task in which items could be conferred positive or negative value based on schematic associations (i.e., schema value) or learned directly from experience via deterministic feedback (i.e., experienced value). We found that ventromedial pFC (vmPFC) activity correlated with the influence of both experience- and schema-based values on participants' decisions. Connectivity between the vmPFC and middle temporal cortex also tracked the inferred value of items based on schematic associations on the first presentation of ingredients, before any feedback. In contrast, the striatum responded to participants' willingness to bet on ingredients as a function of the unsigned strength of their memory for those options' values. These results argue that the striatum and vmPFC play distinct roles in memory-based value judgment and decision-making. Specifically, the vmPFC assesses the value of options based on information inferred from schematic knowledge and retrieved from prior direct experience, whereas the striatum controls a decision to act on options based on memory strength.


2019 ◽  
Vol 46 (3) ◽  
pp. 562-571 ◽  
Author(s):  
Li Kong ◽  
Christina J Herold ◽  
Eric F C Cheung ◽  
Raymond C K Chan ◽  
Johannes Schröder

Abstract Neurological soft signs (NSS) are often found in patients with schizophrenia. A wealth of neuroimaging studies have reported that NSS are related to disturbed cortical-subcortical-cerebellar circuitry in schizophrenia. However, the association between NSS and brain network abnormalities in patients with schizophrenia remains unclear. In this study, the graph theoretical approach was used to analyze brain network characteristics based on structural magnetic resonance imaging (MRI) data. NSS were assessed using the Heidelberg scale. We found that there was no significant difference in global network properties between individuals with high and low levels of NSS. Regional network analysis showed that NSS were associated with betweenness centrality involving the inferior orbital frontal cortex, the middle temporal cortex, the hippocampus, the supramarginal cortex, the amygdala, and the cerebellum. Global network analysis also demonstrated that NSS were associated with the distribution of network hubs involving the superior medial frontal cortex, the superior and middle temporal cortices, the postcentral cortex, the amygdala, and the cerebellum. Our findings suggest that NSS are associated with alterations in topological attributes of brain networks corresponding to the cortical-subcortical-cerebellum circuit in patients with schizophrenia, which may provide a new perspective for elucidating the neural basis of NSS in schizophrenia.


2018 ◽  
Vol 48 (10) ◽  
pp. 1608-1615 ◽  
Author(s):  
G. Donohoe ◽  
J. Holland ◽  
D. Mothersill ◽  
S. McCarthy-Jones ◽  
D. Cosgrove ◽  
...  

AbstractBackgroundThe longstanding association between the major histocompatibility complex (MHC) locus and schizophrenia (SZ) risk has recently been accounted for, partially, by structural variation at the complement component 4 (C4) gene. This structural variation generates varying levels ofC4RNA expression, and genetic information from the MHC region can now be used to predictC4RNA expression in the brain. Increased predictedC4ARNA expression is associated with the risk of SZ, andC4is reported to influence synaptic pruning in animal models.MethodsBased on our previous studies associating MHC SZ risk variants with poorer memory performance, we tested whether increased predictedC4ARNA expression was associated with reduced memory function in a large (n= 1238) dataset of psychosis cases and healthy participants, and with altered task-dependent cortical activation in a subset of these samples.ResultsWe observed that increased predictedC4ARNA expression predicted poorer performance on measures of memory recall (p= 0.016, corrected). Furthermore, in healthy participants, we found that increased predictedC4ARNA expression was associated with a pattern of reduced cortical activity in middle temporal cortex during a measure of visual processing (p< 0.05, corrected).ConclusionsThese data suggest that the effects ofC4on cognition were observable at both a cortical and behavioural level, and may represent one mechanism by which illness risk is mediated. As such, deficits in learning and memory may represent a therapeutic target for new molecular developments aimed at alteringC4’s developmental role.


2018 ◽  
Author(s):  
Ceren Battal ◽  
Mohamed Rezk ◽  
Stefania Mattioni ◽  
Jyothirmayi Vadlamudi ◽  
Olivier Collignon

ABSTRACTThe ability to compute the location and direction of sounds is a crucial perceptual skill to efficiently interact with dynamic environments. How the human brain implements spatial hearing is however poorly understood. In our study, we used fMRI to characterize the brain activity of male and female humans listening to left, right, up and down moving as well as static sounds. Whole brain univariate results contrasting moving and static sounds varying in their location revealed a robust functional preference for auditory motion in bilateral human Planum Temporale (hPT). Using independently localized hPT, we show that this region contains information about auditory motion directions and, to a lesser extent, sound source locations. Moreover, hPT showed an axis of motion organization reminiscent of the functional organization of the middle-temporal cortex (hMT+/V5) for vision. Importantly, whereas motion direction and location rely on partially shared pattern geometries in hPT, as demonstrated by successful cross-condition decoding, the responses elicited by static and moving sounds were however significantly distinct. Altogether our results demonstrate that the hPT codes for auditory motion and location but that the underlying neural computation linked to motion processing is more reliable and partially distinct from the one supporting sound source location.SIGNIFICANCE STATEMENTIn comparison to what we know about visual motion, little is known about how the brain implements spatial hearing. Our study reveals that motion directions and sound source locations can be reliably decoded in the human Planum Temporale (hPT) and that they rely on partially shared pattern geometries. Our study therefore sheds important new lights on how computing the location or direction of sounds are implemented in the human auditory cortex by showing that those two computations rely on partially shared neural codes. Furthermore, our results show that the neural representation of moving sounds in hPT follows a “preferred axis of motion” organization, reminiscent of the coding mechanisms typically observed in the occipital hMT+/V5 region for computing visual motion.


2013 ◽  
Vol 25 (11) ◽  
pp. 1824-1850 ◽  
Author(s):  
Krist A. Noonan ◽  
Elizabeth Jefferies ◽  
Maya Visser ◽  
Matthew A. Lambon Ralph

Semantic cognition requires a combination of semantic representations and executive control processes to direct activation in a task- and time-appropriate fashion [Jefferies, E., & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132–2147, 2006]. We undertook a formal meta-analysis to investigate which regions within the large-scale semantic network are specifically associated with the executive component of semantic cognition. Previous studies have described in detail the role of left ventral pFC in semantic regulation. We examined 53 studies that contrasted semantic tasks with high > low executive requirements to determine whether cortical regions beyond the left pFC show the same response profile to executive semantic demands. Our findings revealed that right pFC, posterior middle temporal gyrus (pMTG) and dorsal angular gyrus (bordering intraparietal sulcus) were also consistently recruited by executively demanding semantic tasks, demonstrating patterns of activation that were highly similar to the left ventral pFC. These regions overlap with the lesions in aphasic patients who exhibit multimodal semantic impairment because of impaired regulatory control (semantic aphasia)—providing important convergence between functional neuroimaging and neuropsychological studies of semantic cognition. Activation in dorsal angular gyrus and left ventral pFC was consistent across all types of executive semantic manipulation, regardless of whether the task was receptive or expressive, whereas pMTG activation was only observed for manipulation of control demands within receptive tasks. Second, we contrasted executively demanding tasks tapping semantics and phonology. Our findings revealed substantial overlap between the two sets of contrasts within left ventral pFC, suggesting this region underpins domain-general control mechanisms. In contrast, we observed relative specialization for semantic control within pMTG as well as the most ventral aspects of left pFC (BA 47), consistent with our proposal of a distributed network underpinning semantic control.


Neuroreport ◽  
2005 ◽  
Vol 16 (6) ◽  
pp. 649-652 ◽  
Author(s):  
Mikkel Wallentin ◽  
Torben Ellegaard Lund ◽  
Svend ??stergaard ◽  
Leif ??stergaard ◽  
Andreas Roepstorff

2020 ◽  
Vol 725 ◽  
pp. 134901 ◽  
Author(s):  
Jiaxin Cui ◽  
Leinian Li ◽  
Mengyi Li ◽  
Robert Siegler ◽  
Xinlin Zhou

2012 ◽  
Vol 122 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Markus Kiefer ◽  
Natalie Trumpp ◽  
Bärbel Herrnberger ◽  
Eun-Jin Sim ◽  
Klaus Hoenig ◽  
...  

2012 ◽  
Vol 43 (6) ◽  
pp. 1255-1267 ◽  
Author(s):  
Z. Atakan ◽  
S. Bhattacharyya ◽  
P. Allen ◽  
R. Martín-Santos ◽  
J. A. Crippa ◽  
...  

BackgroundCannabis can induce transient psychotic symptoms, but not all users experience these adverse effects. We compared the neural response to Δ9-tetrahydrocannabinol (THC) in healthy volunteers in whom the drug did or did not induce acute psychotic symptoms.MethodIn a double-blind, placebo-controlled, pseudorandomized design, 21 healthy men with minimal experience of cannabis were given either 10 mg THC or placebo, orally. Behavioural and functional magnetic resonance imaging measures were then recorded whilst they performed a go/no-go task.ResultsThe sample was subdivided on the basis of the Positive and Negative Syndrome Scale positive score following administration of THC into transiently psychotic (TP; n = 11) and non-psychotic (NP; n = 10) groups. During the THC condition, TP subjects made more frequent inhibition errors than the NP group and showed differential activation relative to the NP group in the left parahippocampal gyrus, the left and right middle temporal gyri and in the right cerebellum. In these regions, THC had opposite effects on activation relative to placebo in the two groups. The TP group also showed less activation than the NP group in the right middle temporal gyrus and cerebellum, independent of the effects of THC.ConclusionsIn this first demonstration of inter-subject variability in sensitivity to the psychotogenic effects of THC, we found that the presence of acute psychotic symptoms was associated with a differential effect of THC on activation in the ventral and medial temporal cortex and cerebellum, suggesting that these regions mediate the effects of the drug on psychotic symptoms.


Sign in / Sign up

Export Citation Format

Share Document