Textile wastewater reuse as an alternative water source for dyeing and finishing processes: A case study

Desalination ◽  
2010 ◽  
Vol 258 (1-3) ◽  
pp. 229-232 ◽  
Author(s):  
Xujie Lu ◽  
Lin Liu ◽  
Rongrong Liu ◽  
Jihua Chen
2015 ◽  
Vol 10 (3) ◽  
pp. 424-431 ◽  
Author(s):  
T. Morales-Pinzón ◽  
M. I. García-Serna ◽  
M. T. Flórez-Calderón

An analysis of the utilisation and quality of rainwater in different collection systems located in the Pereira–Dosquebradas (Colombia) conurbation was conducted to evaluate the conditions in these systems and thus determine whether rainwater is safe water for domestic, commercial and industrial purposes. The quality of rainwater and its relation to selected variables (roofing material, material deposits, piping material and amount of precipitation) were evaluated. Six buildings with different types of roofing (zinc, polycarbonate or fibre cement) that have installed systems to capture rainwater were selected for the evaluation. According to the results, the sampled water is suitable for different uses. In cities, rainwater can be adapted and eventually used as an alternative water source, thereby reducing dependence on local and external sources.


2016 ◽  
Vol 845 ◽  
pp. 18-23
Author(s):  
Siti Qomariyah

Fresh water resources have been depleted and polluted globally. Many developed countries have encouraged in using grey water recycling as an alternative water resource. Many developing countries are however very slow to adopt the need for the alternative. Surakarta City is the second largest city in Central Java Province, Indonesia. The city is experiencing in drought and flooding. Rivers and groundwater have been polluted as well. This paper recommended decentralized urban greywater management strategies with two greywater treatment systems i.e. Two-stage and Subsurface constructed wetland systems. The application of the systems could provide householders getting significant water saving, reducing the amount of wastewater entering the existing drainage channels, and improving surface and groundwater quality.


1991 ◽  
Vol 23 (10-12) ◽  
pp. 2189-2197 ◽  
Author(s):  
Fumitoshi Kiya ◽  
Hidenori Aya

To solve the shortage of available water source, the national government and local authorities have introduced the policy to make use of alternative water sources such as reuse of wastewater and utilization of rainwater in big buildings. This paper deals with the background, the details of the practice of wastewater reuse systems in buildings, and survey results on the performance of recycling systems installed in big buildings. The investigation suggests that most of reclamation plants perform very good in quality but not good in quantity. There has never been any serious claim from users nor any hygiene trouble in these several years. But the full capacity of plants was not usually utilized as designed. The very small demand at weekends and holidays creates operational problems of biological treatment plants and raises cost of reclaimed water. Individual building wastewater reuse is not efficient enough as expected to solve the shortage of water resources. However, it still remains to be a very important means to deal with urban problems. It will lessen excess loading on existing sanitary sewers and interceptors, and will reduce pollutants discharged from a sewage treatment plant.


2015 ◽  
Vol 72 (2) ◽  
pp. 322-331 ◽  
Author(s):  
C. Saldías ◽  
S. Speelman ◽  
P. Amerasinghe ◽  
G. van Huylenbroeck

Wastewater constitutes an alternative water source for the irrigation sector. To fully benefit from it, and reduce possible adverse effects on public health and the environment, we need to look at the regulation of the practice. A prerequisite for this is an institutional analysis, and the points to consider are the institutional mandates. We used the city of Hyderabad, India, as a case study. There, irrigation with wastewater is not supported or recognized, but it happens in practice. It takes place in an indirect and unplanned way. Institutions fail at enforcing regulations, and little attention is given to formalization of the practice. With this article, we aim to untangle the institutional setup, and by doing so, identify the constraints surrounding development of a formal practice. Ultimately, we aim at contributing to the discussion on the agricultural use of wastewater.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 43-50 ◽  
Author(s):  
Marcelo Juanico ◽  
Eran Friedler

Most of the water has been captured in the rivers of Israel and they have turned into dry river-beds which deliver only sporadic winter floods. In a semi-arid country where literally every drop of water is used, reclaimed wastewater is the most feasible water source for river recovery. Two topics are addressed in this paper: water quality management in rivers where most of the flowing water is treated wastewater, and the allocations of reclaimed wastewater required for the recovery of rivers and streams. Water quality management must consider that the main source of water to the river has a pollution loading which reduces its capability to absorb other pollution impacts. The allocation of treated wastewater for the revival of rivers may not affect negatively the water balance of the region; it may eventually improve it. An upstream bruto allocation of 122 MCM/year of wastewater for the recovery of 14 rivers in Israel may favor downstream reuse of this wastewater, resulting in a small neto allocation and in an increase of the water resources available to the country. The discharge of effluents upstream to revive the river followed by their re-capture downstream for irrigation, implies a further stage in the intensification of water reuse.


Author(s):  
Violeta Cabello ◽  
David Romero ◽  
Ana Musicki ◽  
Ângela Guimarães Pereira ◽  
Baltasar Peñate

AbstractThe literature on the water–energy–food nexus has repeatedly signaled the need for transdisciplinary approaches capable of weaving the plurality of knowledge bodies involved in the governance of different resources. To fill this gap, Quantitative Story-Telling (QST) has been proposed as a science for adaptive governance approach that aims at fostering pluralistic and reflexive research processes to overcome narrow framings of water, energy, and food policies as independent domains. Yet, there are few practical applications of QST and most run on a pan-European scale. In this paper, we apply the theory of QST through a practical case study regarding non-conventional water sources as an innovation for water and agricultural governance in the Canary Islands. We present the methods mixed to mobilize different types of knowledge and analyze interconnections between water, energy, and food supply. First, we map and interview relevant knowledge holders to elicit narratives about the current and future roles of alternative water resources in the arid Canarian context. Second, we run a quantitative diagnosis of nexus interconnections related to the use of these resources for irrigation. This analysis provides feedback to the narratives in terms of constraints and uncertainties that might hamper the expectations posed on this innovation. Thirdly, the mixed analysis is used as fuel for discussion in participatory narrative assessment workshops. Our experimental QST process succeeded in co-creating new knowledge regarding the water–energy–food nexus while addressing some relational and epistemological uncertainties in the development of alternative water resources. Yet, the extent to which mainstream socio-technical imaginaries surrounding this innovation were transformed was rather limited. We conclude that the potential of QST within sustainability place-based research resides on its capacity to: (a) bridge different sources of knowledge, including local knowledge; (b) combine both qualitative and quantitative information regarding the sustainable use of local resources, and (c) co-create narratives on desirable and viable socio-technical pathways. Open questions remain as to how to effectively mobilize radically diverse knowledge systems in complex analytical exercises where everyone feels safe to participate.


2011 ◽  
Vol 356-360 ◽  
pp. 2329-2332
Author(s):  
Shu Qin Gao ◽  
Yu Ming Feng

Water source heat pump system(WSHPS) is a new energy saving and environmentally air conditioning system, its degree of influence to groundwater related to the feasibility of construction of WSHPS and development & protection of regional groundwater. After introducing WSHPS, this paper analyzed the influence of WSHPS to groundwater, brought up the protection method to reduce influence. At last, a case study of new campus of Taiyuan university was carried out. The results showed that running of WSHPS won’t bring up disadvantage to groundwater environment.


Sign in / Sign up

Export Citation Format

Share Document