scholarly journals Dataset of the net primary production on the Qinghai-Tibetan Plateau using a soil water content improved Biome-BGC model

Data in Brief ◽  
2019 ◽  
Vol 27 ◽  
pp. 104740
Author(s):  
Chuanhua Li ◽  
Hao Sun ◽  
Xiaodong Wu ◽  
Haiyan Han
2005 ◽  
Vol 6 (6) ◽  
pp. 812-824 ◽  
Author(s):  
T. B. Parkin ◽  
T. C. Kaspar ◽  
Z. Senwo ◽  
J. H. Prueger ◽  
J. L. Hatfield

Abstract Soil respiration is an important component of the carbon dynamics of terrestrial ecosystems. Many factors exert controls on soil respiration, including temperature, soil water content, organic matter, soil texture, and plant root activity. This study was conducted to quantify soil respiration in the Walnut Creek watershed in central Iowa, and to investigate the factors controlling this process. Six agricultural fields were identified for this investigation: three of the fields were cropped with soybean [Glycine max (L.) Merr.] and three were cropped with corn (Zea mays L.). Within each field, soil respiration was measured at nine locations, with each location corresponding to one of three general landscape positions (summit, side slope, and depression). Soil respiration was measured using a portable vented chamber connected to an infrared gas analyzer. Soil samples were collected at each location for the measurement of soil water content, pH, texture, microbial biomass, and respiration potential. Field respiration rates did not show a significant landscape effect. However, there was a significant crop effect, with respiration from cornfields averaging 37.5 g CO2 m−2 day−1 versus an average respiration of 13.1 g CO2 m−2 day−1 in soybean fields. In contrast, laboratory measurements of soil respiration potential, which did not include plant roots, showed a significant landscape effect and an insignificant cropping system effect. Similar relationships were observed for soil organic C and microbial biomass. Additional analyses indicate that corn roots may be more important than soybean roots in their contribution to surface CO2 flux, and that root respiration masked landscape effects on total soil respiration. Also, the failure to account for soil respiration may lead to biased estimates of net primary production measured by eddy covariance.


2019 ◽  
Vol 33 (19) ◽  
pp. 2523-2534 ◽  
Author(s):  
Xuchao Zhu ◽  
Mingan Shao ◽  
Yin Liang ◽  
Zhiyuan Tian ◽  
Xin Wang ◽  
...  

2016 ◽  
Vol 536 ◽  
pp. 247-254 ◽  
Author(s):  
Xuchao Zhu ◽  
Ming’an Shao ◽  
Chen Zeng ◽  
Xiaoxu Jia ◽  
Laiming Huang ◽  
...  

2013 ◽  
Vol 10 (8) ◽  
pp. 13015-13047 ◽  
Author(s):  
G. Fu ◽  
Y.-J. Zhang ◽  
X.-Z. Zhang ◽  
P.-L. Shi ◽  
Y.-T. Zhou ◽  
...  

Abstract. This study aims to understand the response of ecosystem respiration (Reco) to warming and clipping in the alpine meadow of Tibet. A field warming experiment using open top chambers was conducted in three alpine meadow sites at elevation 4313 m, 4513 m and 4693 m on the Tibetan Plateau since July 2008. Clipping was conducted three times a year since 2009. Reco was measured from June to September in 2010–2012. For most cases, the seasonal variation of Reco was mainly affected by soil water content rather than soil and air temperature, especially under warmer environment. Experimental warming tended to decrease seasonal average Reco by 21.6% and 10.9% at elevation 4313 m and 4513 m, respectively, but significantly increased seasonal average Reco by 11.3% at elevation 4693 m. The different responses of Reco to experimental warming could be mainly dependent on temperature and water availability condition. Clipping decreased seasonal average Reco by 6.9%, 36.9% and 31.6% at elevation 4313 m, 4513 m and 4693 m. The consistent declines caused by clipping may be mainly attributed to clipping-induced decline in aboveground biomass. Our findings suggested that the response of Reco to warming differed among the alpine meadow and was regulated by soil water content on the Tibetan Plateau.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


Sign in / Sign up

Export Citation Format

Share Document