Spatial patterns in community structure of motile epibenthic fauna in coastal habitats along the Skagerrak – Baltic salinity gradient

2009 ◽  
Vol 84 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Emma Nohrén ◽  
Leif Pihl ◽  
Håkan Wennhage
PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0239895 ◽  
Author(s):  
Alan M. Friedlander ◽  
Whitney Goodell ◽  
Pelayo Salinas-de-León ◽  
Enric Ballesteros ◽  
Eric Berkenpas ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Malin Olofsson ◽  
James G. Hagan ◽  
Bengt Karlson ◽  
Lars Gamfeldt

Abstract Aquatic phytoplankton experience large fluctuations in environmental conditions during seasonal succession and across salinity gradients, but the impact of this variation on their diversity is poorly understood. We examined spatio-temporal variation in nano- and microphytoplankton (> 2 µm) community structure using almost two decades of light-microscope based monitoring data. The dataset encompasses 19 stations that span a salinity gradient from 2.8 to 35 along the Swedish coastline. Spatially, both regional and local phytoplankton diversity increased with broad-scale salinity variation. Diatoms dominated at high salinity and the proportion of cyanobacteria increased with decreasing salinity. Temporally, cell abundance peaked in winter-spring at high salinity but in summer at low salinity. This was likely due to large filamentous cyanobacteria blooms that occur in summer in low salinity areas, but which are absent in higher salinities. In contrast, phytoplankton local diversity peaked in spring at low salinity but in fall and winter at high salinity. Whilst differences in seasonal variation in cell abundance were reasonably well-explained by variation in salinity and nutrient availability, variation in local-scale phytoplankton diversity was poorly predicted by environmental variables. Overall, we provide insights into the causes of spatio-temporal variation in coastal phytoplankton community structure while also identifying knowledge gaps.


2012 ◽  
Vol 78 (20) ◽  
pp. 7429-7437 ◽  
Author(s):  
Ines Boujelben ◽  
Pablo Yarza ◽  
Cristina Almansa ◽  
Judith Villamor ◽  
Sami Maalej ◽  
...  

ABSTRACTThe microbial community inhabiting Sfax solar salterns on the east coast of Tunisia has been studied by means of different molecular and culture-dependent tools that have unveiled the presence of novel microbial groups as well as a community structure different from that of other coastal hypersaline environments. We have focused on the study of the viral assemblages of these salterns and their changes along the salinity gradient and over time. Viruses from three ponds (C4, M1, and TS) encompassing salinities from moderately hypersaline to saturated (around 14, 19, and 35%, respectively) were sampled in May and October 2009 and analyzed by transmission electron microscopy (TEM) and pulsed-field gel electrophoresis (PFGE). Additionally, for all three October samples and the May TS sample, viral metagenomic DNA was cloned in fosmids, end sequenced, and analyzed. Viral concentration, as well as virus-to-cell ratios, increased along the salinity gradient, with around 1010virus-like particles (VLPs)/ml in close-to-saturation ponds, which represents the highest viral concentration reported so far for aquatic systems. Four distinct morphologies could be observed with TEM (spherical, tailed, spindled, and filamentous) but with various proportions in the different samples. Metagenomic analyses indicated that every pond harbored a distinct viral assemblage whose G+C content could be roughly correlated with that of the active part of the microbial community that may have constituted the putative hosts. As previously reported for hypersaline metaviromes, most sequences did not have matches in the databases, although some were conserved among the Sfax metaviromes. BLASTx, BLASTp, and dinucleotide frequency analyses indicated that (i) factors additional to salinity could be structuring viral communities and (ii) every metavirome had unique gene contents and dinucleotide frequencies. Comparison with hypersaline metaviromes available in the databases indicated that the viral assemblages present in close-to-saturation environments located thousands of kilometers apart presented some common traits among them in spite of their differences regarding the putative hosts. A small core metavirome for close-to-saturation systems was found that contained 7 sequences of around 100 nucleotides (nt) whose function was not hinted at byin silicosearch results, although it most likely represents properties essential for hyperhalophilic viruses.


Sign in / Sign up

Export Citation Format

Share Document