scholarly journals Synthesis and evaluation of the substrate activity of C-6 substituted purine ribosides with E. coli purine nucleoside phosphorylase: Palladium mediated cross-coupling of organozinc halides with 6-chloropurine nucleosides

2012 ◽  
Vol 47 ◽  
pp. 167-174 ◽  
Author(s):  
Abdalla E.A. Hassan ◽  
Reham A.I. Abou-Elkhair ◽  
James M. Riordan ◽  
Paula W. Allan ◽  
William B. Parker ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Alexey L. Kayushin ◽  
Julia A. Tokunova ◽  
Ilja V. Fateev ◽  
Alexandra O. Arnautova ◽  
Maria Ya. Berzina ◽  
...  

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3′-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2′,3′-anhydroinosine, a byproduct in the preparation of 3-′deoxyinosine. Moreover, 2′,3′-anhydroinosine forms during radical dehalogenation of 9-(2′,5′-di-O-acetyl-3′-bromo- -3′-deoxyxylofuranosyl)hypoxanthine, a precursor of 3′-deoxyinosine in chemical synthesis. The products of 2′,3′-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2′,3′-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2′,3′-anhydroinosine hydrolysis in D2O is fully determined for the first time.


Gene Therapy ◽  
2000 ◽  
Vol 7 (20) ◽  
pp. 1738-1743 ◽  
Author(s):  
V K Gadi ◽  
S D Alexander ◽  
J E Kudlow ◽  
P Allan ◽  
W B Parker ◽  
...  

2005 ◽  
Vol 280 (23) ◽  
pp. 22318-22325 ◽  
Author(s):  
Yang Zang ◽  
Wen-Hu Wang ◽  
Shaw-Wen Wu ◽  
Steven E. Ealick ◽  
Ching C. Wang

Trichomonas vaginalis is an anaerobic protozoan parasite that causes trichomoniasis, a common sexually transmitted disease with worldwide impact. One of the pivotal enzymes in its purine salvage pathway, purine nucleoside phosphorylase (PNP), shows physical properties and substrate specificities similar to those of the high molecular mass bacterial PNPs but differing from those of human PNP. While carrying out studies to identify inhibitors of T. vaginalis PNP (TvPNP), we discovered that the nontoxic nucleoside analogue 2-fluoro-2′-deoxyadenosine (F-dAdo) is a “subversive substrate.” Phosphorolysis by TvPNP of F-dAdo, which is not a substrate for human PNP, releases highly cytotoxic 2-fluoroadenine (F-Ade). In vitro studies showed that both F-dAdo and F-Ade exert strong inhibition of T. vaginalis growth with estimated IC50 values of 106 and 84 nm, respectively, suggesting that F-dAdo might be useful as a potential chemotherapeutic agent against T. vaginalis. To understand the basis of TvPNP specificity, the structures of TvPNP complexed with F-dAdo, 2-fluoroadenosine, formycin A, adenosine, inosine, or 2′-deoxyinosine were determined by x-ray crystallography with resolutions ranging from 2.4 to 2.9 Å. These studies showed that the quaternary structure, monomer fold, and active site are similar to those of Escherichia coli PNP. The principal active site difference is at Thr-156, which is alanine in E. coli PNP. In the complex of TvPNP with F-dAdo, Thr-156 causes the purine base to tilt and shift by 0.5 Å as compared with the binding scheme of F-dAdo in E. coli PNP. The structures of the TvPNP complexes suggest opportunities for further improved subversive substrates beyond F-dAdo.


2002 ◽  
Vol 315 (3) ◽  
pp. 351-371 ◽  
Author(s):  
Gertraud Koellner ◽  
Agnieszka Bzowska ◽  
Beata Wielgus-Kutrowska ◽  
Marija Luić ◽  
Thomas Steiner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document