Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia

2005 ◽  
Vol 521 (1-3) ◽  
pp. 9-20 ◽  
Author(s):  
Jui-Ching Chen ◽  
Feng-Ming Ho ◽  
Pei-Dawn Lee Chao ◽  
Chih-Ping Chen ◽  
Kee-Ching G. Jeng ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dong-Sung Lee ◽  
Wonmin Ko ◽  
Chi-Su Yoon ◽  
Dong-Cheol Kim ◽  
Jinju Yun ◽  
...  

The brain is vulnerable to oxidative stress and inflammation that can occur as a result of aging or neurodegenerative diseases. Our work has sought to identify natural products that regulate heme oxygenase (HO)-1 and to determine their mechanism of action in neurodegenerative diseases. KCHO-1 is a novel herbal therapeutic containing 30% ethanol (EtOH) extracts from nine plants. In this study, we investigated the antineuroinflammatory effects of KCHO-1 in lipopolysaccharide- (LPS-) treated mouse BV2 microglia. KCHO-1 inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase- (COX-) 2, and COX-2-derived prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also reduced tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and IL-6 production. This effect was correlated with the suppression of inhibitor of nuclear factor kappa B-α(IκB-α) phosphorylation and degradation and nuclear factor kappa B (NF-κB) translocation and DNA binding. Additionally, KCHO-1 upregulated HO-1 expression by promoting nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Tin protoporphyrin (SnPP), an HO activity inhibitor, was used to verify the inhibitory effects of KCHO-1 on proinflammatory mediators and proteins associated with HO-1 expression. Our data suggest that KCHO-1 has therapeutic potential in neurodegenerative diseases caused by neuroinflammation.


2021 ◽  
Vol 19 (4) ◽  
pp. 398-404
Author(s):  
Jiao Zhong

Alkaloids - derived from natural plants - were widely used for therapy in diabetes or diabetes-related complications. Sanguinarine, a benzophenanthridine alkaloid derived from Sanguinaria canadensis, has been identified as a potential drug for type 2 diabetes. However, the role of sanguinarine on diabetes-related complication, diabetic nephropathy, has not been reported yet. In a rat model of diabetic nephropathy we have demonstrated increased levels of 24 h urinary proteins, serum creatinine, and blood urea nitrogen, as well as series of degenerative changes in the kidney tissues. Oral administration with sanguinarine to diabetic rats diminished kidney injury markers and improved the tissue morphology. Furthermore, sanguinarine attenuated increase in the levels of tumor necrosis factor-α and interleukin-6 through downregulation of phosphonuclear factor-kappa B and phosphorylated inhibitor of nuclear factor kappa-B. Lastly, sanguinarine reversed the effects of streptozotocin on levels of reactive oxygen species, malonaldehyde, superoxide dismutase, and glutathione peroxidase through upregulation of nuclear factor erythropoietin-2-related factor 2, heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 in kidney of rats. In conclusion, sanguinarine ameliorates diabetic nephropathy in rats through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1335
Author(s):  
Marina Mostafizar ◽  
Claudia Cortes-Pérez ◽  
Wanda Snow ◽  
Jelena Djordjevic ◽  
Aida Adlimoghaddam ◽  
...  

The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.


2020 ◽  
Vol 18 (10) ◽  
pp. 918-935 ◽  
Author(s):  
Shareen Singh ◽  
Thakur Gurjeet Singh

A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.


Sign in / Sign up

Export Citation Format

Share Document