Development and validation of a simple estimating tool to predict heating and cooling energy demand for attics of residential buildings

2012 ◽  
Vol 54 ◽  
pp. 12-21 ◽  
Author(s):  
Somayeh Asadi ◽  
Marwa Hassan ◽  
Ali Beheshti
2014 ◽  
Vol 1025-1026 ◽  
pp. 1099-1102 ◽  
Author(s):  
Hae Kwon Jung ◽  
Ki Hyung Yu ◽  
Young Sun Jeong

Aapartment houses account for more than 60% of the total of residential buildings to be built in South Korea. In particular, a high-rise apartment house with 21 floors or more has steadily increased in densely populated areas. The heating and cooling energy demand of the apartment house is greatly affected by the shape and the thermal insulation of its building envelope. In addition to its functional efficiency, the shape of building envelope in a high-rise apartment house is considered to be an important factor for the urban landscape with diverse construction methods and materials. In this study, we analyzed the heating and cooling energy demand depending on the effective heat capacity of building structure and the installation position of thermal insulation materials as the design conditions of high-rise apartment houses. This study used the ECO2 energy analysis program for the building energy efficiency grading certification system in South Korea.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5979
Author(s):  
Ikram Merini ◽  
Angel Molina-García ◽  
M. Socorro García-Cascales ◽  
Mustapha Mahdaoui ◽  
Mohamed Ahachad

The trend in energy consumption, with a particular focus on heating and cooling demand, is an issue that is relevant to the promotion of new energy policies and more efficient energy systems. Moreover, heating and cooling energy demand is expected to rise in the next several decades, mainly due to climate change as well as increasing incomes in developing countries. In this context, the building sector is currently a relevant energy-intensive economic sector in Morocco; it accounts for 33% of the country’s total energy demand (as the sector with the second highest energy demand, after the transport sector), with the residential sector accounting for 25% and the tertiary sector accounting for 8%. Aiming to reduce energy dependence and promote sustainable development, the Moroccan government recently issued a comprehensive plan to increase the share of renewables and improve energy efficiency. This strategy includes novel thermal building regulations promoted by the Moroccan Agency for Energy Efficiency. This paper analyzes the thermal behavior and heating-cooling energy demand of a residential building located in Tangier (Morocco) as a case example, based on the country’s new thermal regulations and considering specific climatological conditions. A comparison with common Moroccan residential buildings as well as with those in nearby countries with similar meteorological conditions but significant differences in terms of energy demand regulation and requirements, such as Spain, is also included. Simulations were carried out using the DesingBuilder and EnergyPlus Software packages. According to the results, the last building thermal regulation requirements in Morocco need to be revised and extended in order to achieve the energy efficiency objectives established by the Moroccan government for 2030.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2019 ◽  
Vol 11 (14) ◽  
pp. 3939 ◽  
Author(s):  
Antonio Artino ◽  
Gianpiero Evola ◽  
Giuseppe Margani ◽  
Edoardo Marino

All around the world, a huge amount of buildings have been built before the enforcement of specific codes for seismic resistance and energy efficiency. Particularly in Italy, over 74% of residential buildings were constructed before 1980, when only 25% of the territory was classified as seismic, and nearly 86% were built before 1991, when the first restrictive regulation on energy efficiency was issued. This means that most buildings need both seismic and energy renovation actions to improve their sustainability level. The proposed combined retrofit strategy for reinforced concrete framed buildings is based on the replacement of the external layer of double-leaf infill walls, made of hollow bricks, with high-performing AAC blocks: this solution can be implemented by operating mainly from the outside of the building, thus reducing occupants’ disruption during retrofitting. The generally neglected structural contribution of masonry infill panels is here considered using a recently developed macro-element modeling approach. The results suggest that, from a structural viewpoint, the proposed intervention involves the highest improvement at the damage limitation limit state, while lower upgrades are recorded at life safety limit state and near-collapse limit state. In regards to the energy issues, the energy demand can be reduced by 10% and 4% for heating and cooling, respectively, just by replacing the outer layer of blocks; further savings can be achieved through the application of a supplementary insulation layer.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2496 ◽  
Author(s):  
Laura Carnieletto ◽  
Borja Badenes ◽  
Marco Belliardi ◽  
Adriana Bernardi ◽  
Samantha Graci ◽  
...  

The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two different tools are developed in the H2020 research project named, “Cheap GSHPs”: A design tool and a decision support system. In both cases, the energy demand of the buildings may not be calculated by the user. The main input data, to evaluate the size of the borehole heat exchangers, is the building energy demand. This paper presents a methodology to correlate energy demand, building typologies, and climatic conditions for different types of residential buildings. Rather than envelope properties, three insulation levels have been considered in different climatic conditions to set up a database of energy profiles. Analyzing European climatic test reference years, 23 locations have been considered. For each location, the overall energy and the mean hourly monthly energy profiles for heating and cooling have been calculated. Pre-calculated profiles are needed to size generation systems and, in particular, ground source heat pumps. For this reason, correlations based on the degree days for heating and cooling demand have been found in order to generalize the results for different buildings. These correlations depend on the Köppen–Geiger climate scale.


Sign in / Sign up

Export Citation Format

Share Document