Viability of exterior shading devices for high-rise residential buildings: Case study for cooling energy saving and economic feasibility analysis

2014 ◽  
Vol 82 ◽  
pp. 771-785 ◽  
Author(s):  
Jinkyun Cho ◽  
Changwoo Yoo ◽  
Yundeok Kim
2021 ◽  
Vol 16 (3) ◽  
pp. 87-108
Author(s):  
Nadeeka Jayaweera ◽  
Upendra Rajapaksha ◽  
Inoka Manthilake

ABSTRACT This study examines the daylight and energy performance of 27 external shading scenarios in a high-rise residential building in the urban tropics. The cooling energy, daytime lighting energy and the spatial daylight autonomy (sDA) of the building model were simulated in Rhino3D and Grasshopper simulation software. The best performance scenario (vertical and horizontal shading on the twentieth floor, horizontal shading only for the eleventh floor and no shading for the second floor) satisfied 75 sDA(300lx|50) with corresponding annual enery performance of 16%–20% in the cardinal directions. The baseline scenario, which is the current practice of providing balconies on all floors, reduced daylight to less than 75 sDA on the eleventh and second floor, even though it had higher annual enery performance (19%–24%) than the best performance scenario. Application of the design principles to a case study indicated that 58% of the spaces had over 75 sDA for both Baseline and Best performance scenarios, while an increase in enery performance of 1%–3% was found in the Best performance scenario compared to the Baseline.


2014 ◽  
Vol 953-954 ◽  
pp. 1481-1487
Author(s):  
Liu Jin

Windows energy saving design of residential buildings has increasingly got the attention of people. Through a large number of surveys and analysis of residential buildings in Chongqing and consumers personal experience, the author finds problems and deficiency, and then proposes principles of residential buildings sun shading reconstruction in Chongqing city. Taking the high-rise residential building of one university in Chongqing as reconstruction sample, selecting a specific time period, the author recalculates sun shading coefficient with and without sun shading by using Ecotect software to do simulation analysis. Finally, the reasonable reconstruction design pattern is put forward through cases. Keywords: Buildings Sun Shading, Sun Shading Reconstruction, Energy Saving


2018 ◽  
Vol 33 ◽  
pp. 02047 ◽  
Author(s):  
Inessa Lukmanova ◽  
Roman Golov

The paper analyzes modern energy-efficient technologies, both being applied, and only introduced into the application in the construction of high-rise residential buildings. All technologies are systematized by the authors as part of a unified model of "Arrows of Energy-Efficient Technologies", which imply performing energy-saving measures in the design, construction and operation of buildings.


2017 ◽  
Vol 05 (04) ◽  
pp. 1750022
Author(s):  
Wei JIANG ◽  
Xuhui ZHANG

Despite China's significant progress in energy saving renovations, during the past 10 years, problems about inefficiencies remain. In the Netherlands, the energy labeling system (ELS) effectively linked policy objectives and market forces, combined with the stepped tariffs aimed at the performance of energy-saving renovation, generating a virtuous cycle of housing energy efficiency upgrading. China may draw the experience from Netherlands. In this regard, the authors probe the market effect and operating mechanism of the Dutch ELS and the stepped tariffs. The theory of multi-level governance (MLG) is introduced to the filed investigations both in China and the Netherlands. Based on the group-interviews and depth-interviews with the officials in related agencies and the residents of retrofitting housing, the authors obtained first-hand information to ensure a close case study on Netherlands' housing ELS and its implementation, in order to provide some enlightenment for China's existing housing renovation and low carbon development.


2018 ◽  
Vol 164 ◽  
pp. 01007
Author(s):  
Dany Perwita Sari ◽  
Yun-shang Chiou

There are some architectural factors in the energy saving design of residential houses in Taiwan. In addition, in rural area, window glazing is a key factor to reducing electricity. For these purposes, a simulation model of exterior shading has been done in this study. Various types of shading devices have been analysed and compared in terms of energy savings. Simulation analysis by DesignBuilder reveals that shading devices has substantial impact to minimizing energy consumption. The results derived in this paper could provide useful suggestions for the shading design of residential buildings at rural area in Taiwan.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2593 ◽  
Author(s):  
Reza Khakian ◽  
Mehrdad Karimimoshaver ◽  
Farshid Aram ◽  
Soghra Zoroufchi Benis ◽  
Amir Mosavi ◽  
...  

The energy performance of buildings and energy-saving measures have been widely investigated in recent years. However, little attention has been paid to buildings located in rural areas. The aim of this study is to assess the energy performance of two-story residential buildings located in the mountainous village of Palangan in Iran and to evaluate the impact of multiple parameters, namely building orientation, window-to-wall ratio (WWR), glazing type, shading devices, and insulation, on its energy performance. To attain a nearly zero energy building design in rural areas, the building is equipped with photovoltaic modules. The proposed building design is then economically evaluated to ensure its viability. The findings indicate that an energy saving of 29% can be achieved compared to conventional buildings, and over 22 MWh of electricity can be produced on an annual basis. The payback period is assessed at 21.7 years. However, energy subsidies are projected to be eliminated in the near future, which in turn may reduce the payback period.


Sign in / Sign up

Export Citation Format

Share Document