Peer review report 1 on “Numerical simulation of ductile fracture based on mean field homogenization method: Modeling and implementation”

2015 ◽  
Vol 133 ◽  
pp. 181-182
2008 ◽  
Vol 75 (5) ◽  
Author(s):  
M. R. Tonks ◽  
A. J. Beaudoin ◽  
F. Schilder ◽  
D. A. Tortorelli

More accurate manufacturing process models come from better understanding of texture evolution and preferred orientations. We investigate the texture evolution in the simplified physical framework of a planar polycrystal with two slip systems used by Prantil et al. (1993, “An Analysis of Texture and Plastic Spin for Planar Polycrystal,” J. Mech. Phys. Solids, 41(8), pp. 1357–1382). In the planar polycrystal, the crystal orientations behave in a manner similar to that of a system of coupled oscillators represented by the Kuramoto model. The crystal plasticity finite element method and the stochastic Taylor model (STM), a stochastic method for mean-field polycrystal plasticity, predict the development of a steady-state texture not shown when employing the Taylor hypothesis. From this analysis, the STM appears to be a useful homogenization method when using representative standard deviations.


Sign in / Sign up

Export Citation Format

Share Document