Mode II critical stress intensity factor of solid wood obtained from the asymmetric four-point bend fracture test using groove-free and side-grooved samples

2021 ◽  
Vol 258 ◽  
pp. 108043
Author(s):  
Hiroshi Yoshihara ◽  
Makoto Maruta
2018 ◽  
Vol 32 (22) ◽  
pp. 1850241 ◽  
Author(s):  
Minh-Quy Le

Molecular dynamics simulations with Tersoff potential were performed to study the fracture properties of monolayer germanene at 300 K. The two-dimensional (2D) Young’s modulus, 2D tensile strength and axial strain at the tensile strength of pristine monolayer germanene are about 36.0 and 37.5 N/m; 5.1 and 4.6 N/m; 21.4 and 15.9%, in the zigzag and armchair directions, respectively. Griffith theory was applied to compute the critical stress intensity factor. Compared to monolayer graphene, the critical stress intensity factor of monolayer germanene is much smaller. Fracture pattern and effects of the initial crack length on the fracture properties are also studied. Results are useful for future design and applications of this 2D material.


2000 ◽  
Vol 649 ◽  
Author(s):  
H.W. Ngan ◽  
Y.L. Chiu

ABSTRACTBy analysing the relevant results in the literature, we have found that, when indentation is made on a subgranular level, the hardness varies roughly inversely with the square root of the distance between the indent and the grain boundary. This effect is analogous to the Hall-Petch effect for macroscopic deformation.


2014 ◽  
Vol 592-594 ◽  
pp. 1160-1164 ◽  
Author(s):  
S. Sundaresan ◽  
B. Nageswara Rao

The life expectancy or failure of aerospace pressure vessels is evaluated by the critical stress intensity determined by the crack growth resistance curve of a material. Load versus crack mouth opening displacement data is generated from the Compact Tension specimens made from the weld joints of maraging steel rocket motor segments. The steps involved to generate critical stress intensity factor is explained. A power law is adopted to model the crack extension in terms of stress intensity factor and determine the maximum failure load of weld specimens. Maximum failure loads of CT specimens obtained by test and analysis are presented.


Sign in / Sign up

Export Citation Format

Share Document