BDE-209 induces autophagy and apoptosis via IRE1α/Akt/mTOR signaling pathway in human umbilical vein endothelial cells

2019 ◽  
Vol 253 ◽  
pp. 429-438 ◽  
Author(s):  
Yun Hou ◽  
Jiarong Fu ◽  
Shitian Sun ◽  
Yinchuan Jin ◽  
Xifeng Wang ◽  
...  
2018 ◽  
Vol 96 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Jun Cheng ◽  
Tangting Chen ◽  
Pengyun Li ◽  
Jing Wen ◽  
Ningbo Pang ◽  
...  

Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, has been demonstrated to have potent anti-inflammatory properties. However, the protective effects of STS on lipopolysaccharide (LPS)-induced inflammation in endothelial cells remain to be elucidated. In the present study, human umbilical vein endothelial cells (HUVECs) were used to explore the effects of STS on LPS-induced inflammation and the molecular mechanism involved. HUVECs were pretreated with STS for 2 h, followed by stimulation with LPS. Then expression and secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and the activation of nuclear factor-κB (NF-κB) were assessed. The results demonstrated that STS significantly decreased LPS-induced TNF-α and IL-1β protein expression in HUVECs. Similarly, the increased levels of TNF-α and IL-1β in cell supernatants stimulated by LPS were also significantly inhibited by STS. Furthermore, STS inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. All the results suggest that STS prevents LPS-induced inflammation through suppressing NF-κB signaling pathway in endothelial cells, indicating the potential utility of STS for the treatment of inflammatory diseases.


2020 ◽  
Author(s):  
Wen-Hao Zhou ◽  
Yi-Ming Su ◽  
Yu Zhang ◽  
Bang-Min Han ◽  
Hai-Tao Liu ◽  
...  

Abstract Background Docetaxel is a first-line chemotherapy for the treatment of patients with castration-resistant prostate cancer (CRPC). Despite the good initial response of docetaxel, drug resistance will inevitably occur. Mechanisms underlying docetaxel resistance are not well elaborated. Endothelial cells (ECs) have been implicated in the progression and metastasis of prostate cancer (PCa). However, little attention has been paid to the role of ECs in the development of docetaxel resistance in PCa. Methods Here, we sought to investigate the function and mechanism of ECs involving in the docetaxel resistance of PCa. The 22Rv1 and C4-2B PCa cell lines were cultured with or without human umbilical vein endothelial cells (HUVEC). The proliferation of each PCa cell line was assessed by CCK8 and EdU assays. Cell viability of each PCa cell line treated with docetaxel was evaluated by CCK8. Apoptosis was measured by flow cytometry. Quantitative reverse transcription (RT)-PCR assay was used to determine the expression of ETS related gene (ERG) in each PCa cell line and FGF2 in HUVEC. The proteins including ERG, Caspase3, PARP, Akt, p-Akt, mTOR and p-mTOR were quantified by western blotting. ERG overexpressing C4-2B cells(C4-2B-ERG) were constructed by transfection with pLenti6.3-ERG lentivirus. C4-2B-ERG cells were knocked down by transfecting with ERG siRNAs. Differentially expressed cytokines between the serum-free media from 22Rv1 and 22Rv1/HUVEC co-culture system were detected by human cytokine array and determined by ELISA assay. Tumors were induced in mice by injecting 22Rv1 cells with or without HUVEC and treated with docetaxel. Tumor growth and apoptosis were examined by immunohistochemistry and TUNEL respectively. Results ECs promoted proliferation and inhibited apoptosis in PCa cells (in vitro) and mouse xenograft tumors induced by these cells (in vivo) under docetaxel treatment. ECs secreted FGF2 to induce ERG expression and activate the Akt/mTOR signaling pathway in PCa cells contributing to docetaxel resistance. Blocking FGF2 could reverse the enhancing effects of HUVEC on docetaxel resistance in PCa cells. Inhibition of the Akt/mTOR signaling pathway could alleviate chemoresistance mediated by ERG. Conclusion ECs promote docetaxel resistance via FGF2/ERG/Akt/mTOR signaling pathway in PCa cells. Targeting FGF/ FGFR signaling may represent a promising therapeutic strategy to overcome docetaxel resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingtao Jiang ◽  
Chengji Dong ◽  
Liang Zhai ◽  
Junsheng Lou ◽  
Jie Jin ◽  
...  

Random-pattern skin flap is a vital technique frequently applied in reconstruction surgeries for its convenience and effectiveness in solving skin defects. However, ischemic necrosis, especially in the distal areas of the flap, still needs extra attention after surgery. Earlier evidence has suggested that paeoniflorin (PF) could stimulate angiogenesis and suppress ischemic cardiovascular disease. However, few studies have focused on the role of PF in flap survival. In this study, we have demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with PF can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and apoptosis. To better evaluate, HUVECs’ physiology, cell tube formation, migration, and adhesion were assessed. Mechanistically, PF protects HUVECs against apoptosis via stimulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. PF also downregulates mitochondrial ROS production to reduce excessive intracellular ROS production induced by TBHP and restore TBHP-induced mitochondrial depolarization. As a result, silencing Nrf2 partially abolishes the protective effect of PF exposure on HUVECs. In in vivo experiments, the oral administration of PF was shown to have enhanced the vascularization of regenerated tissues and promote flap survival. However, the PF-mediated protection was partially lost after co-treatment with ML385, a selective Nrf2 inhibitor, suggesting that PF is a crucial modulator regulating the Nrf2/HO-1 signaling pathway. In summary, our data have provided a new insight into PF as a potential therapy for enhancing random-pattern flap viability.


Sign in / Sign up

Export Citation Format

Share Document