A modified High-Order Spectral method for wavemaker modeling in a numerical wave tank

2012 ◽  
Vol 34 ◽  
pp. 19-34 ◽  
Author(s):  
Guillaume Ducrozet ◽  
Félicien Bonnefoy ◽  
David Le Touzé ◽  
Pierre Ferrant
2016 ◽  
Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind A. Arnsten

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events can become critical from design perspective. In a numerical wave tank, extreme waves can be generated through focussed waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a pre-selected location and time. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface shows good agreement with the measurements from experiments. In further computations, the wave impact of the focussed waves on a vertical circular cylinder is investigated. The focussed wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave-structure interaction problems in particular and for free surface flows in general. The open-source CFD code REEF3D solves the three-dimensional Navier-Stokes equations on a staggered Cartesian grid. Solid boundaries are taken into account with the ghost cell immersed boundary method. For the discretization of the convection terms of the momentum equations, the conservative finite difference version of the fifth-order WENO (weighted essentially non-oscillatory) scheme is used. For temporal treatment, the third-order TVD (total variation diminishing) Runge-Kutta scheme is employed. For the pressure, the projection method is used. The free surface flow is solved as two-phase fluid system. For the interface capturing, the level set method is selected. The level set function can be discretized with high-order differencing schemes. This makes it the appropriate solution for wave propagation problems based on Navier-Stokes solvers, which requires high-order numerical methods to avoid artificial wave damping. The numerical model is fully parallelized based on the domain decomposition, using MPI (message passing interface) for internode communication.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 6585-6593 ◽  
Author(s):  
Xiaojie Tian ◽  
Qingyang Wang ◽  
Guijie Liu ◽  
Wei Deng ◽  
Zhiming Gao

Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


2016 ◽  
Vol 203 ◽  
pp. 245-254 ◽  
Author(s):  
Guillaume Ducrozet ◽  
Félicien Bonnefoy ◽  
David Le Touzé ◽  
Pierre Ferrant

Author(s):  
Atsushi TAKAGI ◽  
Masashi WATANABE ◽  
Taro ARIKAWA

2018 ◽  
Vol 170 ◽  
pp. 89-99 ◽  
Author(s):  
Fábio M. Marques Machado ◽  
António M. Gameiro Lopes ◽  
Almerindo D. Ferreira

Author(s):  
Tim Bunnik ◽  
Rene´ Huijsmans

During the last few years there has been a strong growth in the availability and capabilities of numerical wave tanks. In order to assess the accuracy of such methods, a validation study was carried out. The study focuses on two types of numerical wave tanks: 1. A numerical wave tank based a non-linear potential flow algorithm. 2. A numerical wave tank based on a Volume of Fluid algorithm. The first algorithm uses a structured grid with triangular elements and a surface tracking technique. The second algorithm uses a structured, Cartesian grid and a surface capturing technique. Validation material is available by means of waves measured at multiple locations in two different model test basins. The first method is capable of generating waves up to the break limit. Wave absorption is therefore modeled by means of a numerical beach and not by mean of the parabolic beach that is used in the model basin. The second method is capable of modeling wave breaking. Therefore, the parabolic beach in the model test basin can be modeled and has also been included. Energy dissipation therefore takes place according to physics which are more related to the situation in the model test basin. Three types of waves are generated in the model test basin and in the numerical wave tanks. All these waves are generated on basin scale. The following waves are considered: 1. A scaled 100-year North-Sea wave (Hs = 0.24 meters, Tp = 2.0 seconds) in deep water (5 meters). 2. A scaled operational wave (Hs = 0.086 meters, Tp = 1.69 seconds) at intermediate water depth (0.86 meters) generated by a flap-type wave generator. 3. A scaled operational wave (Hs = 0.046 meters, Tp = 1.2 seconds) in shallow water (0.35 meters) generated by a piston-type wave generator. The waves are generated by means of a flap or piston-type wave generator. The motions of the wave generator in the simulations (either rotational or translational) are identical to the motions in the model test basin. Furthermore, in the simulations with intermediate water depth, the non-flat contour of the basin bottom (ramp) is accurately modeled. A comparison is made between the measured and computed wave elevation at several locations in the basin. The comparison focuses on: 1. Reflection characteristics of the model test basin and the numerical wave tanks. 2. The accuracy in the prediction of steep waves. 3. Second order effects like set-down in intermediate and shallow water depth. Furthermore, a convergence study is presented to check the grid independence of the wave tank predictions.


Sign in / Sign up

Export Citation Format

Share Document