On Masuda uniqueness theorem for Leray–Hopf weak solutions in mixed-norm spaces

Author(s):  
Tuoc Phan ◽  
Timothy Robertson
2020 ◽  
Vol 26 (2) ◽  
pp. 185-192
Author(s):  
Sunanda Naik ◽  
Pankaj K. Nath

AbstractIn this article, we define a convolution operator and study its boundedness on mixed-norm spaces. In particular, we obtain a well-known result on the boundedness of composition operators given by Avetisyan and Stević in [K. Avetisyan and S. Stević, The generalized Libera transform is bounded on the Besov mixed-norm, BMOA and VMOA spaces on the unit disc, Appl. Math. Comput. 213 2009, 2, 304–311]. Also we consider the adjoint {\mathcal{A}^{b,c}} for {b>0} of two parameter families of Cesáro averaging operators and prove the boundedness on Besov mixed-norm spaces {B_{\alpha+(c-1)}^{p,q}} for {c>1}.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Stevo Stević

The boundedness and compactness of an integral-type operator recently introduced by the author from Zygmund-type spaces to the mixed-norm space on the unit ball are characterized here.


2015 ◽  
Vol 36 (6) ◽  
pp. 853-875 ◽  
Author(s):  
Raymond Cheng ◽  
Charles B. Harris

Sign in / Sign up

Export Citation Format

Share Document