scholarly journals A 7-month cigarette smoke inhalation study in C57BL/6 mice demonstrates reduced lung inflammation and emphysema following smoking cessation or aerosol exposure from a prototypic modified risk tobacco product

2015 ◽  
Vol 80 ◽  
pp. 328-345 ◽  
Author(s):  
Blaine Phillips ◽  
Emilija Veljkovic ◽  
Michael J. Peck ◽  
Ansgar Buettner ◽  
Ashraf Elamin ◽  
...  
2021 ◽  
Vol 5 ◽  
pp. 239784732199587
Author(s):  
Ashutosh Kumar ◽  
Ulrike Kogel ◽  
Marja Talikka ◽  
Celine Merg ◽  
Emmanuel Guedj ◽  
...  

Cigarette smoking causes serious diseases, including lung cancer, atherosclerotic coronary artery disease, peripheral vascular disease, chronic bronchitis, and emphysema. While cessation remains the most effective approach to minimize smoking-related disease, alternative non-combustible tobacco-derived nicotine-containing products may reduce disease risks among those unable or unwilling to quit. E-vapor aerosols typically contain significantly lower levels of smoke-related harmful and potentially harmful constituents; however, health risks of long-term inhalation exposures are unknown. We designed a 7-month inhalation study in C57BL/6 mice to evaluate long-term respiratory toxicity of e-vapor aerosols compared to cigarette smoke and to assess the impact of smoking cessation (Cessation group) or switching to an e-vapor product (Switching group) after 3 months of exposure to 3R4F cigarette smoke (CS). There were no significant changes in in-life observations (body weights, clinical signs) in e-vapor groups compared to the Sham Control. The 3R4F CS group showed reduced respiratory function during exposure and had lower body weight and showed transient signs of distress post-exposure. Following 7 months of exposure, e-vapor aerosols resulted in no or minimal increase in pulmonary inflammation, while exposure to 3R4F CS led to impairment of lung function and caused marked lung inflammation and emphysematous changes. Biological changes observed in the Switching group were similar to the Cessation group. 3R4F CS exposure dysregulated the lung and nasal tissue transcriptome, while these molecular effects were substantially lower in the e-vapor group. Results from this study demonstrate that in comparison with 3R4F CS, e-vapor aerosols induce substantially lower biological responses including pulmonary inflammation and emphysematous changes, and that complete switching from CS to e-vapor products significantly reduces biological changes associated with CS in C57BL/6 mice.


2010 ◽  
Vol 01 (01) ◽  
Author(s):  
R. B. Lichtner ◽  
B. Friedrichs ◽  
A. Buettner ◽  
F. Van Overveld ◽  
W. Stinn

2007 ◽  
Vol 45 (6) ◽  
pp. 1076-1090 ◽  
Author(s):  
Eugenia H. Theophilus ◽  
W. Keith Shreve ◽  
Paul H. Ayres ◽  
Charles D. Garner ◽  
Deborah H. Pence ◽  
...  

Author(s):  
Yuki Imura ◽  
Takahiro Tabuchi

Although secondhand cigarette smoke is known to cause various health consequences, even the short-term effects of exposure to secondhand heated-tobacco-product (HTP) aerosol are unknown. The purpose of this study was to examine short-term symptoms related to secondhand HTP aerosol exposure. An internet-based self-reported questionnaire survey was conducted in 2019 as a part of the Japan Society and New Tobacco Internet Survey (JASTIS) study. In total, 8784 eligible respondents aged 15–73 years were analyzed. We examined the frequency (%) of secondhand combustible cigarette smoke and HTP aerosol exposure, and the exposure-related subjective symptoms (sore throat, cough, asthma attack, chest pain, eye pain, nausea, headache, and other symptoms). Overall, 56.8% of those exposed to secondhand cigarette smoke had any subjective symptoms, compared to 39.5% of those exposed to HTP aerosol. Asthma attack and chest pain were reported more frequently when associated with secondhand HTP exposure (10.9 and 11.8%, respectively) than with secondhand cigarette smoke exposure (8.4 and 9.9%, respectively). Sore throat, cough, eye pain, nausea, and headache were also more frequently reported when associated with secondhand cigarette smoke than with secondhand HTP exposure. This is the first study to examine severe subjective symptoms such as asthma attacks and chest pains, and to suggest that respiratory and cardiovascular abnormalities could be related to secondhand heated-tobacco-product aerosol exposure. Further careful investigations are necessary.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Sam Ansari ◽  
Karine Baumer ◽  
Stéphanie Boué ◽  
Sophie Dijon ◽  
Remi Dulize ◽  
...  

Author(s):  
Ee Tsin Wong ◽  
Justyna Szostak ◽  
Bjoern Titz ◽  
Tom Lee ◽  
Sin Kei Wong ◽  
...  

AbstractCigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe−/− mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations—(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)—or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure–volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Sign in / Sign up

Export Citation Format

Share Document