scholarly journals Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis

2019 ◽  
Vol 124 ◽  
pp. 29-38
Author(s):  
Banu Metin ◽  
Aylin Döğen ◽  
Esra Yıldırım ◽  
G. Sybren de Hoog ◽  
Joseph Heitman ◽  
...  
1981 ◽  
Vol 1 (6) ◽  
pp. 522-534
Author(s):  
B Weiffenbach ◽  
J E Haber

In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.


1987 ◽  
Vol 7 (12) ◽  
pp. 4441-4452
Author(s):  
M Marshall ◽  
D Mahoney ◽  
A Rose ◽  
J B Hicks ◽  
J R Broach

The product of the Saccharomyces cerevisiae SIR4 gene, in conjunction with at least three other gene products, prevents expression of mating-type genes resident at loci at either end of chromosome III, but not of the same genes resident at the MAT locus in the middle of the chromosome. To address the mechanism of this novel position effect regulation, we have conducted a structural and genetic analysis of the SIR4 gene. We have determined the nucleotide sequence of the gene and found that it encodes a lysine-rich, serine-rich protein of 152 kilodaltons. Expression of the carboxy half of the protein complements a chromosomal nonsense mutation of sir4 but not a complete deletion of the gene. These results suggest that SIR4 protein activity resides in two portions of the molecule, but that these domains need not be covalently linked to execute their biological function. We also found that high-level expression of the carboxy domain of the protein yields dominant derepression of the silent loci. This anti-Sir activity can be reversed by increased expression of the SIR3 gene, whose product is normally also required for maintaining repression of the silent loci. These results are consistent with the hypothesis that SIR3 and SIR4 proteins physically associate to form a multicomponent complex required for repression of the silent mating-type loci.


1985 ◽  
Vol 5 (8) ◽  
pp. 2154-2158
Author(s):  
B Weiffenbach ◽  
J E Haber

Homothallic switching of the mating type genes of Saccharomyces cerevisiae occurs by a gene conversion event, replacing sequences at the expressed MAT locus with a DNA segment copied from one of two unexpressed loci, HML or HMR. The transposed Ya or Y alpha sequences are flanked by homologous regions that are believed to be essential for switching. We examined the transposition of a mating type gene (hmr alpha 1-delta 6) which contains a 150-base-pair deletion spanning the site where the HO endonuclease generates a double-stranded break in MAT that initiates the gene conversion event. Despite the fact that the ends of the cut MAT region no longer share homology with the donor hmr alpha 1-delta 6, switching of MATa or MAT alpha to mat alpha 1-delta 6 was efficient. However, there was a marked increase in the number of aberrant events, especially the formation of haploid-inviable fusions between MAT and the hmr alpha 1-delta 6 donor locus.


1984 ◽  
Vol 4 (1) ◽  
pp. 203-211
Author(s):  
K Tanaka ◽  
T Oshima ◽  
H Araki ◽  
S Harashima ◽  
Y Oshima

A mutation defective in the homothallic switching of mating type alleles, designated hml alpha-2, has previously been characterized. The mutation occurred in a cell having the HO MATa HML alpha HMRa genotype, and the mutant culture consisted of ca. 10% a mating type cells, 90% nonmater cells of haploid cell size, and 0.1% sporogenous diploid cells. Genetic analyses revealed that nonmater haploid cells have a defect in the alpha 2 cistron at the MAT locus. This defect was probably caused by transposition of a cassette originating from the hml alpha-2 allele by the process of the homothallic mating type switch. That the MAT locus of the nonmater cells is occupied by a DNA fragment indistinguishable from the Y alpha sequence in electrophoretic mobility was demonstrated by Southern hybridization of the EcoRI-HindIII fragment encoding the MAT locus with a cloned HML alpha gene as the probe. The hml alpha-2 mutation was revealed to be a one-base-pair deletion at the ninth base pair in the X region from the X and Y boundary of the HML locus. This mutation gave rise to a shift in the open reading frame of the alpha 2 cistron. A molecular mechanism for the mating type switch associated with the occurrence of sporogenous diploid cells in the mutant culture is discussed.


2016 ◽  
Vol 106 (11) ◽  
pp. 1300-1310 ◽  
Author(s):  
Nan-Yi Wang ◽  
Ke Zhang ◽  
Jose C. Huguet-Tapia ◽  
Jeffrey A. Rollins ◽  
Megan M. Dewdney

Phyllosticta citricarpa, the citrus black spot pathogen, was first identified in Florida in March 2010. Subsequently, this pathogen has become established in Florida but can be easily confused with the endemic nonpathogenic citrus endophyte P. capitalensis. In this study, the mating-type (MAT) loci of P. citricarpa and P. capitalensis were identified via draft genome sequencing and were characterized at the structural and sequence levels. P. citricarpa was determined to have an idiomorphic, heterothallic MAT locus structure, whereas P. capitalensis was found to have a single MAT locus consistent with a homothallic mating system. A survey of P. citricarpa isolates from Florida revealed that only the MAT1-2 idiomorph existed in the Floridian population. In contrast, isolates collected from Australia exhibited a 1:1 ratio of MAT1-1 and MAT1-2 isolates. Development and analysis of simple sequence repeat markers revealed a single multilocus genotype (MLG) in the Floridian population (n = 70) and 11 MLG within the Australian population (n = 24). These results indicate that isolates of P. citricarpa from Florida are likely descendent from a single clonal lineage and are reproducing asexually. The disease management focus in Florida will need to be concentrated on the production and dispersal of pycnidiospores.


1981 ◽  
Vol 1 (6) ◽  
pp. 522-534 ◽  
Author(s):  
B Weiffenbach ◽  
J E Haber

In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.


1985 ◽  
Vol 5 (8) ◽  
pp. 2154-2158 ◽  
Author(s):  
B Weiffenbach ◽  
J E Haber

Homothallic switching of the mating type genes of Saccharomyces cerevisiae occurs by a gene conversion event, replacing sequences at the expressed MAT locus with a DNA segment copied from one of two unexpressed loci, HML or HMR. The transposed Ya or Y alpha sequences are flanked by homologous regions that are believed to be essential for switching. We examined the transposition of a mating type gene (hmr alpha 1-delta 6) which contains a 150-base-pair deletion spanning the site where the HO endonuclease generates a double-stranded break in MAT that initiates the gene conversion event. Despite the fact that the ends of the cut MAT region no longer share homology with the donor hmr alpha 1-delta 6, switching of MATa or MAT alpha to mat alpha 1-delta 6 was efficient. However, there was a marked increase in the number of aberrant events, especially the formation of haploid-inviable fusions between MAT and the hmr alpha 1-delta 6 donor locus.


Genetics ◽  
1991 ◽  
Vol 128 (3) ◽  
pp. 539-547 ◽  
Author(s):  
M Picard ◽  
R Debuchy ◽  
E Coppin

Abstract DNAs that encode the mating-type functions (mat+ and mat-) of the filamentous fungus Podospora anserina were cloned with the use of the mating-type A probe from Neurospora crassa. Cloning the full mat information was ascertained through gene replacement experiments. Molecular and functional analyses of haploid transformants carrying both mating types lead to several striking conclusions. Mat+ mat- strains are dual maters. However, the resident mat information is dominant to the mat information added by transformation with respect to fruiting body development and ascus production. Moreover, when dual mating mat+ mat- strains are crossed to mat+ or mat- testers, there is strong selection, after fertilization, that leads to the loss from the mat+ mat- nucleus of the mat information that matches that of the tester. Finally, the mat locus contains at least two domains, one sufficient for fertilization, the other necessary for sporulation.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sandra Lorena Ament-Velásquez ◽  
Veera Tuovinen ◽  
Linnea Bergström ◽  
Toby Spribille ◽  
Dan Vanderpool ◽  
...  

The study of the reproductive biology of lichen fungal symbionts has been traditionally challenging due to their complex lifestyles. Against the common belief of haploidy, a recent genomic study found a triploid-like signal in Letharia. Here, we infer the genome organization and reproduction in Letharia by analyzing genomic data from a pure culture and from thalli, and performing a PCR survey of the MAT locus in natural populations. We found that the read count variation in the four Letharia specimens, including the pure culture derived from a single sexual spore of L. lupina, is consistent with haploidy. By contrast, the L. lupina read counts from a thallus' metagenome are triploid-like. Characterization of the mating-type locus revealed a conserved heterothallic configuration across the genus, along with auxiliary genes that we identified. We found that the mating-type distributions are balanced in North America for L. vulpina and L. lupina, suggesting widespread sexual reproduction, but highly skewed in Europe for L. vulpina, consistent with predominant asexuality. Taken together, we propose that Letharia fungi are heterothallic and typically haploid, and provide evidence that triploid-like individuals are hybrids between L. lupina and an unknown Letharia lineage, reconciling classic systematic and genetic studies with recent genomic observations.


Sign in / Sign up

Export Citation Format

Share Document