A highly sensitive room temperature humidity sensor based on 2D-WS2 nanosheets

FlatChem ◽  
2018 ◽  
Vol 9 ◽  
pp. 21-26 ◽  
Author(s):  
S.G. Leonardi ◽  
W. Wlodarski ◽  
Y. Li ◽  
N. Donato ◽  
Z. Sofer ◽  
...  
2007 ◽  
Vol 1032 ◽  
Author(s):  
Seon Oh Hwang ◽  
Chang Hyun Kim ◽  
Yoon Myung ◽  
Seong-Hun Park ◽  
Jeunghee Park ◽  
...  

AbstractVertically-aligned Mn (10%)-doped Fe3O4 (Fe2.7Mn0.3O4) nanowire arrays were produced by the reduction/substitution of pre-grown Fe2O3 nanowires. These nanowires were ferromagnetic with a Verwey temperature of 129 K. X-ray magnetic circular dichroism measurements revealed that the Mn2+ ions preferentially occupy the tetrahedral sites, substituting for the Fe3+ ions. We observed that the Mn substitution decreases the magnetization, but increases the electrical conductivity. We developed highly sensitive gas sensors using these nanowire arrays, operating at room temperature, whose sensitivity showed a correlation with their bond strength of diatomic/triatomic molecules. Based on the fact that the sensitivity was highest toward water vapor, an excellent-performance humidity sensor was fabricated.


RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1157-1164
Author(s):  
Parag V. Adhyapak ◽  
Aishwarya M. Kasabe ◽  
Amruta D. Bang ◽  
Jalindar Ambekar ◽  
Sulabha K. Kulkarni

A novel, highly sensitive gold nanowire (AuNW) resistive sensor is reported here for humidity sensing in the relative humidity range of 11% to 92% RH as well as for breath sensing.


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20453-20458 ◽  
Author(s):  
Youdong Zhang ◽  
Xumin Pan ◽  
Zhao Wang ◽  
Yongming Hu ◽  
Xiaoyuan Zhou ◽  
...  

A humidity sensor based on NaNbO3 nanofiber networks with fast, ultra-sensitive and selective room-temperature response was fabricated through electrospinning process.


2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


2021 ◽  
Vol 332 ◽  
pp. 129493
Author(s):  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

2021 ◽  
pp. 113008
Author(s):  
Aashi Gupta ◽  
Neha Sakhuja ◽  
Ravindra Kumar Jha ◽  
Navakanta Bhat

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3815
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Joel Ljunggren ◽  
Håkan Olin

Metal-semiconductor junctions and interfaces have been studied for many years due to their importance in applications such as semiconductor electronics and solar cells. However, semiconductor-metal networks are less studied because there is a lack of effective methods to fabricate such structures. Here, we report a novel Au–ZnO-based metal-semiconductor (M-S)n network in which ZnO nanowires were grown horizontally on gold particles and extended to reach the neighboring particles, forming an (M-S)n network. The (M-S)n network was further used as a gas sensor for sensing ethanol and acetone gases. The results show that the (M-S)n network is sensitive to ethanol (28.1 ppm) and acetone (22.3 ppm) gases and has the capacity to recognize the two gases based on differences in the saturation time. This study provides a method for producing a new type of metal-semiconductor network structure and demonstrates its application in gas sensing.


Sign in / Sign up

Export Citation Format

Share Document