Lipids and carotenoids of wheat grain and flour and attempt of correlating them with digital image analysis of kernel surface and cross-sections

2004 ◽  
Vol 37 (5) ◽  
pp. 429-438 ◽  
Author(s):  
Iwona Konopka ◽  
Witold Kozirok ◽  
Daniela Rotkiewicz
1998 ◽  
Vol 25 (6) ◽  
pp. 1041-1049 ◽  
Author(s):  
Mohammed Taleb Obaidat ◽  
Hashem R Al-Masaeid ◽  
Fouad Gharaybeh ◽  
Taisir S Khedaywi

The objective of this study was to examine the feasibility of using a semiautomated computer-vision system to quantify the percentage of voids in mineral aggregates (VMA%) of bituminous mixtures. The system used a hybrid procedure which utilized a digital image analysis scheme and a planimeter surveying instrument. Thirty-nine Marshall specimens were prepared using limestone and gravel aggregates. Values of VMA% were obtained using the ASTM conventional procedure and the computer-vision procedure. To compute VMA% using the computer-vision procedure, normal case photography with uniform scale images was used to map horizontal and vertical cross sections of Marshall specimens. Image domain measurements were corrected for distortion. Spatial filters and image processing operations were used to enhance the aggregate edges. Experimental results showed slight variations between VMA% computed using conventional and the computer-vision procedures. The average differences of VMA% between conventional and the computer-vision procedures were 0.81% and 0.006% for gravel and limestone specimens, respectively. Measurements of VMA% for limestone mixtures were more precise than those for gravel mixtures because of the angular edge shape of limestone particles. Variations in VMA% were due to the anisotropic properties of asphalt mixtures, aggregate distribution in the asphalt mixture, and different shapes of aggregates. Using the computer-vision-based technique, VMA% of horizontal and vertical cross sections were 50% consistent. The existence of fine aggregate in the asphalt mixture affected the accuracy potential of the developed system because a low-resolution camera was used. Increasing the camera resolution and automating the area computation of aggregate are expected to enhance the potential accuracy of the procedure. The proposed method for VMA quantification is anticipated to improve field quality control of hot-mix asphalt (HMA). The use of computer-vision technology with bituminous mixtures can open the doors to a wide variety of applications.Key words: bituminous mixtures, voids in mineral aggregate, computer vision, automation, image processing.


2000 ◽  
Vol 10 (2) ◽  
pp. 7-9
Author(s):  
Yaser Natour ◽  
Christine Sapienza ◽  
Mark Schmalz ◽  
Savita Collins

2019 ◽  
Vol 8 (3) ◽  
pp. 11 ◽  
Author(s):  
Gustav Stålhammar ◽  
Thonnie Rose O. See ◽  
Stephen Phillips ◽  
Stefan Seregard ◽  
Hans E. Grossniklaus

2008 ◽  
Vol 14 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Hiromasa Tanaka ◽  
Gojiro Nakagami ◽  
Hiromi Sanada ◽  
Yunita Sari ◽  
Hiroshi Kobayashi ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aristeidis A. Villias ◽  
Stefanos G. Kourtis ◽  
Hercules C. Karkazis ◽  
Gregory L. Polyzois

Abstract Background The replica technique with its modifications (negative replica) has been used for the assessment of marginal fit (MF). However, identification of the boundaries between prosthesis, cement, and abutment is challenging. The recently developed Digital Image Analysis Sequence (DIAS) addresses this limitation. Although DIAS is applicable, its reliability has not yet been proven. The purpose of this study was to verify the DIAS as an acceptable method for the quantitative assessment of MF at cemented crowns, by conducting statistical tests of agreement between different examiners. Methods One hundred fifty-one implant-supported experimental crowns were cemented. Equal negative replicas were produced from the assemblies. Each replica was sectioned in six parts, which were photographed under an optical microscope. From the 906 standardized digital photomicrographs (0.65 μm/pixel), 130 were randomly selected for analysis. DIAS included tracing the profile of the crown and the abutment and marking the margin definition points before cementation. Next, the traced and marked outlines were superimposed on each digital image, highlighting the components’ boundaries and enabling MF measurements. One researcher ran the analysis twice and three others once, independently. Five groups of 130 measurements were formed. Intra- and interobserver reliability was evaluated with intraclass correlation coefficient (ICC). Agreement was estimated with the standard error of measurement (SEM), the smallest detectable change at the 95% confidence level (SDC95%), and the Bland and Altman method of limits of agreement (LoA). Results Measured MF ranged between 22.83 and 286.58 pixels. Both the intra- and interobserver reliability were excellent, ICC = 1 at 95% confidence level. The intra- and interobserver SEM and SDC95% were less than 1 and 3 pixels, respectively. The Bland–Altman analysis presented graphically high level of agreement between the mean measurement of the first observer and each of the three other observers’ measurements. Differences between observers were normally distributed. In all three cases, the mean difference was less than 1 pixel and within ± 3 pixels LoA laid at least 95% of differences. T tests of the differences did not reveal any fixed bias (P > .05, not significant). Conclusion The DIAS is an objective and reliable method able to detect and quantify MF at ranges observed in clinical practice.


1998 ◽  
Vol 7 (5) ◽  
pp. 469-478 ◽  
Author(s):  
Jan P. Stegemann ◽  
John J. O'Neil ◽  
Don T. Nicholson ◽  
Claudy J.-P. Mullon

Accurate and consistent measurement of tissue volume is critical to performing many types of islet research; however, conventional visual determination of isolated islet yields through a microscope is heavily operator dependent. An improved method of islet volume determination using digital image analysis (DIA) was developed to remove operator bias and automate the islet counting process. A series of 140 porcine islet isolations were used to evaluate the DIA method in three separate stages. In Stage 1 ( n = 29 isolations), the conventional and DIA methods were correlated with two other independent islet quantitation methods: insulin extraction, and DNA extraction. It was found that volumes determined by DIA correlated more closely with insulin content and DNA content than did conventionally determined volumes. In Stages 2 and 3 ( n = 54 and 57 isolations, respectively), it was shown that an increase in the number of fields analyzed by DIA did not significantly improve the quality of the correlations. Inclusion of very small tissue (<50 fun in diameter), which is ignored in the conventional protocol affected yields by less than 10% and did not significantly improve the correlation with insulin or DNA content. Quantitation of isolated islet tissue volume using DIA has been shown to be rapid, consistent, and objective. In the laboratory, use of this method as the standard for islet volume measurement will allow more meaningful comparison of experimental results between centers. In the clinic, its use will allow more accurate dosing of transplanted tissue. © 1998 Elsevier Science Inc.


Sign in / Sign up

Export Citation Format

Share Document