Severe depletion of available deep soil water induced by revegetation on the arid and semiarid Loess Plateau

2021 ◽  
Vol 491 ◽  
pp. 119156
Author(s):  
Binbin Li ◽  
Wantao Zhang ◽  
Shujie Li ◽  
Ju Wang ◽  
Guobin Liu ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2183 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Bingcheng Si ◽  
Huijie Li ◽  
Min Li

Piston and preferential water flow are viewed as the two dominant water transport mechanisms regulating terrestrial water and solute cycles. However, it is difficult to accurately separate the two water flow patterns because preferential flow is not easy to capture directly in field environments. In this study, we take advantage of the afforestation induced desiccated deep soil, and directly quantify piston and preferential water flow using chloride ions (Cl−) and soil water profiles, in four deforested apple orchards on the Loess Plateau. The deforestation time ranged from 3 to 15 years. In each of the four selected orchards, there was a standing orchard that was planted at the same time as the deforested one, and therefore the standing orchard was used to benchmark the initial Cl− and soil water profiles of the deforested orchard. In the deforested orchards, piston flow was detected using the migration of the Cl− front, and preferential flow was measured via soil water increase below the Cl− front. Results showed that in the desiccated zone, Cl− migrated to deeper soil after deforestation, indicating that the desiccated soil layer formed by the water absorption of deep-rooted apple trees did not completely inhibit the movement of water. Moreover, there was an evident increase in soil water below the downward Cl− front, directly demonstrating the existence of preferential flow in deep soil under field conditions. Although pore water velocity was small in the deep loess, preferential water flow still accounted for 34–65% of total infiltrated water. This study presented the mechanisms that regulate movement of soil water following deforestation through field observations and advanced our understanding of the soil hydrologic process in deep soil.


2019 ◽  
Vol 223 ◽  
pp. 105655 ◽  
Author(s):  
Yuanhong Zhang ◽  
Rui Wang ◽  
Shulan Wang ◽  
Fang Ning ◽  
Hao Wang ◽  
...  

2012 ◽  
Vol 9 (10) ◽  
pp. 12029-12060 ◽  
Author(s):  
Y. Q. Wang ◽  
M. A. Shao ◽  
Z. P. Liu ◽  
C. C. Zhang

Abstract. Negative water balance in soil can lead to soil desiccation and subsequent the formation of a dried soil layer (DSL). Essential progress on DSL temporal change has been hampered by difficulty in collecting deep soil water samples (i.e. > 1000 cm), which are necessary to quantify the real extent of DSL. We collected soil samples up to a depth of 1800 cm and investigated the evolution of soil water content (SWC) and DSL under three vegetation types (C. korshinskii, R. pseudoacacia, apple) in three zones (Ansai, Luochuan, and Changwu) of the Chinese Loess Plateau. As plant growth age increased, SWC, available soil water (ASW), SWC within DSL (DSL-SWC), and quantity of water deficit for DSL (DSL-QWD) showed similar change trends of decreasing at first and then increasing, whereas DSL thickness (DSLT) showed an increasing trend over time. A turning point in soil water change was found for the three vegetation types. In Changwu zone, the turning point, both in and out of DSL, was corresponded to the 17-year-old apple orchard. The period from 9 to 17 yr was vital to maintain the buffering function of deep soil water pool and to avoid the deterioration of soil desiccation because the highest mean decline velocity of ASW and the maximum mean forming velocity of DSLT were 165 mm yr−1 and 168 cm yr−1, respectively. Significant correlations were found between DSLT and growth age and root depth, and between DSL-QWD and root depth, whereas mean DSL-SWC had no significant correlation with either growth year or root depth. Soil water condition was highly dependent on the growth year of the plants. This information provides pertinent reference for water resource management in the Chinese Loess Plateau and possibly in other water-limited regions in the world.


2019 ◽  
Vol 11 (8) ◽  
pp. 2345
Author(s):  
Weijie Yu ◽  
Juying Jiao

The authors did not notice during the proofreading phase that there were errors in the affiliations, funding, and acknowledgments [...]


2021 ◽  
Vol 260 ◽  
pp. 107990
Author(s):  
Gulnazar Ali ◽  
Zikui Wang ◽  
Xinrong Li ◽  
Naixuan Jin ◽  
Huiying Chu ◽  
...  

2021 ◽  
Vol 784 ◽  
pp. 147153
Author(s):  
Wei Xiang ◽  
Bingcheng Si ◽  
Min Li ◽  
Han Li ◽  
Yanwei Lu ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruixue Cao ◽  
Xiaoxu Jia ◽  
Laiming Huang ◽  
Yuanjun Zhu ◽  
Lianhai Wu ◽  
...  

Author(s):  
Mingshuang Shen ◽  
Yang Yu ◽  
Shouhong Zhang ◽  
Ruoxiu Sun ◽  
Zhengle Shi ◽  
...  

Characterizing soil water content (SWC) dynamics is a prerequisite for conducting sustainable vegetation restoration on the Chinese Loess Plateau. However, quantifying the variations of the SWC in the deep soil layers remains a challenge because of the different driving factors and the complexity of surface processes. In this study, SWC in 0–10 m of artificial forestlands (AF), apple orchard (AO), native forestland (NF), farmland (maize; FL), and native grassland (NG) were monitored during 2019–2020. The deficit size (DS) and recovery index (RI) were used to explore the effects of vegetation types on SWC. The results showed that the SWCs of forestlands were significantly lower than the SWC of native grassland (12.32%) and tree species significantly affected the SWC. The monthly DS values in forestlands were negative, while those of FL were positive. The DS value in 0-10 m and predictive values below 10 m were negative of forestlands. Thus, tree planting may have consumed soil water at a depth of > 10 m. During the investigation period, soil water was restored in 0–1 m with the positive RI values. In addition, artificial forestlands showed good performance in deep soil water recovery. Canopy density was the controlling factor for soil water restoration. Our results demonstrated that the current afforestation mode used more soil water but was conducive to deep soil water conservation. Therefore, reasonable adjustments should be made according to the local soil and water resources for future vegetation selection and management.


2020 ◽  
Author(s):  
Min Yang ◽  
Shaofei Wang ◽  
Xining Zhao ◽  
Xiaodong Gao

<p>Due to their great economic benefits, there are many apple orchards on the Loess Plateau and aggressive expansion is planned. However, little is known about their ecological impact in relation to the deep soil water, soil organic carbon and soil particle aggregation. An accurate evaluation of the ecological impact of apple orchards is crucial to ensure the establishment of sustainable ecosystems on the Loess Plateau. We, therefore, measured the soil water content variation in deep layers (WCAD) (200-800 cm), soil organic carbon (SOC) content and density (0-800 cm) and, soil aggregate stability (0-40 cm) in apple (Malus pumila) orchards and ecological plantations of black locust (Robinia pesudoacacia) and korshinsk peashrub (Caragana korshinskii). The results suggested that (1) the soil water in deep soil was generally lower under apple orchards (13.29%), black locust (12.4%) and korshinsk peashrub (13.46%) than under arable land (18.35%), both in the semiarid and semihumid regions. This finding implied that apple orchard, black locust and korshinsk peashrub plantations caused intense reductions in soil moisture compared with the arable land, leading to severe soil desiccation. (2) Apple orchards (1.85 to 5.49 g kg<sup>-1</sup>) had significantly (p <0.05) lower SOC density than ecological plantations (2.15 to 8.95 g kg<sup>-1</sup>), especially in 0-100 cm soil layer, in both semiarid and semihumid regions. This result suggests that apple orchards have no profitless for SOC sequestration over the long-term because their clean cultivation management increase the risk of SOC loss by soil erosion. (3) In semiarid and semihumid regions, soil aggregate stability (the mean weight diameter, MWD) in apple orchards (0.26-0.63 mm) was significantly (p <0.05) lower than under black locust (0.63-2.97 mm) and korshinsk peashrub (0.72-2.13 mm) plantations in 0-40 cm layers, and even lower than in arable land in the 0-20 cm layer in most regions, which means that apple orchards have low anti-erodibility. Our results suggest that continued expansion of apple orchards and ecological plantations both consumed much deep soil water, but the ecological effect (e.g., SOC sequestration, soil and water conservation) brought by apple orchard is much lower than that of ecological plantations. In the interest of sustainable development in the region, apple cultivation should be undertaken with caution, especially in semiarid regions.</p>


Sign in / Sign up

Export Citation Format

Share Document