Peridotite dissolution and carbonation rates at fracture surfaces under conditions relevant for in situ mineralization of CO2

2013 ◽  
Vol 106 ◽  
pp. 1-24 ◽  
Author(s):  
R. van Noort ◽  
C.J. Spiers ◽  
M.R. Drury ◽  
M.T. Kandianis
Keyword(s):  
1989 ◽  
Vol 153 ◽  
Author(s):  
Benjamin M. DeKoven ◽  
Eric A. Ness ◽  
David D. Hawn

AbstractA series of boron carbide materials was hot pressed with 0-7% excess carbon. The strength of each material was determined by four point bending, and found to decrease from about 600MPa to 300MPa as the carbon content increased from 0% to 7%. Diamond indentation yielded hardness values that decreased from 28.3 to 25.OGPa and toughness values that increased from 3.5 to 4.5 MPa√mover the same carbon range. Each sample was fractured in situ in ultrahigh vacuum (UHV) and examined by scanning Auger microanalysis (SAM) and XPS to determine both the elemental and chemical state distributions. For the samples with excess carbon, localized carbonrich regions are observed on fracture surfaces by SAM. XPS reveals a 50% enhancement of excess carbon on the fracture surface compared to the bulk for the sample with 7% excess carbon. A correlation was observed between surface carbon composition and the bulk toughness and hardness. The C(ls) XPS spectra were utilized to determine the nature of carbon in B4C on freshly fractured and Ne+ bombarded surfaces. Two distinct peaks were observed in the C(ls) region. Low dose ion bombardment resulted in a single broad C(ls) peak at the midpoint of the two initial peaks. It can be inferred from this data that there are C-C-C intericosahedral linkages in B4C.


1985 ◽  
Vol 19 (8) ◽  
pp. 919-922 ◽  
Author(s):  
F. Pavlyák ◽  
G. Hárs
Keyword(s):  

2021 ◽  
Author(s):  
Jin Lai ◽  
Dong Li ◽  
Yong Ai ◽  
Hongkun Liu ◽  
Deyang Cai ◽  
...  

Abstract. The Lower Cretaceous Bashijiqike Formation of Kuqa depression is ultra-deeply buried sandstone in fold-and-thrust belts. Few researches link diagenetic processes with structure. To fill this gap, a comprehensive analysis integrating diagenesis with structure pattern, fracture and in situ stress is performed following a structural diagenetic approach. The results show that the pore spaces include residual intergranular pores, intergranular and intragranular dissolution pores, and micro-fractures. The sandstones experienced a high degree of mechanical compaction, and compaction is limited in well-sorted rocks or abundant in rigid quartz grains. The most volumetrically important diagenetic minerals are calcites. The framework grains experienced a varied degree of dissolution, and intergranular and intragranular dissolution pores are formed. Special aims are paid on the dissolution associated with the fracture planes. Most natural fractures are cemented by carbonate cements, which limit fluid flow. In addition, presences of fracture enhance dissolution, and the fracture planes are enlarged by dissolution. Cementation and dissolution can occur simultaneously in fracture surfaces, and the enlarged fracture surfaces can be cemented by late-stage cements. The in situ stress magnitudes are calculated using well logs. The horizontal stress difference (Δσ) determines the degree of mechanical compaction, and rocks associated with low Δσ experienced a low degree of compaction, and there contain preserved intergranular pores. Natural fractures are mainly related to the low Δσ layers. The presences of intergranular and intragranular dissolution pores are mainly associated with the fractured zones. The high quality reservoirs with intergranular pores or fractures are related to low Δσ layers. The structural diagenesis researches above help the prediction of reservoir quality in ultra-deep sandstones, and reduce the uncertainty in deep natural gas exploration in Kuqa depression.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document