scholarly journals Minimal Lagrangian surfaces in ℂP2 via the loop group method Part I: The contractible case

2021 ◽  
Vol 161 ◽  
pp. 104016
Author(s):  
Josef F. Dorfmeister ◽  
Hui Ma
2019 ◽  
Vol 6 (1) ◽  
pp. 194-227 ◽  
Author(s):  
Josef F. Dorfmeister ◽  
Walter Freyn ◽  
Shimpei Kobayashi ◽  
Erxiao Wang

AbstractThe classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8].In this survey we will show that to each of the five different types of real forms for a loop group of A2(2) there exists a surface class, for which some frame is integrable for all values of the loop parameter if and only if it belongs to one of the surface classes, that is, minimal Lagrangian surfaces in ℂℙ2, minimal Lagrangian surfaces in ℂℍ2, timelike minimal Lagrangian surfaces in ℂℍ12, proper definite affine spheres in ℝ3 and proper indefinite affine spheres in ℝ3, respectively.


2016 ◽  
Vol 20 (3) ◽  
pp. 409-448
Author(s):  
Josef F. Dorfmeister ◽  
Jun-Ichi Inoguchi ◽  
Shimpei Kobayashi

2016 ◽  
Vol 298 ◽  
pp. 207-253
Author(s):  
Josef F. Dorfmeister ◽  
Jun-ichi Inoguchi ◽  
Shimpei Kobayashi

Sign in / Sign up

Export Citation Format

Share Document