Mo2067 Comparison of the Diagnostic Yield of EUS Needles for Liver Biopsy: Ex-Vivo Study

2016 ◽  
Vol 83 (5) ◽  
pp. AB516
Author(s):  
Woo Jung J. Lee ◽  
Lance Uradomo ◽  
Yang Zhang ◽  
William Twaddell ◽  
Peter Darwin
2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Woo Jung Lee ◽  
Lance T. Uradomo ◽  
Yang Zhang ◽  
William Twaddell ◽  
Peter Darwin

Background and Aims. EUS-guided liver biopsy is an emerging method of liver tissue acquisition which is safe and had been shown to produce excellent histological yield. There is limited data comparing the diagnostic yield of different FNA needles. We aimed to compare the diagnostic performance of four commercially available 19-gauge FNA needles. Methods. Four FNA needles and one percutaneous needle were used to perform liver biopsies on two human cadaveric livers: Cook Echotip Procore™, Olympus EZ Shot 2™, Boston Scientific Expect Slimline™, Covidien SharkCore™, and an 18-gauge percutaneous needle (TruCore™, Argon Medical Devices). Each needle obtained biopsies by three, six, and nine complete back-and-forth motions of the needle (“throw”) with a fanning technique. The combined lengths of specimen fragments and the total number of complete portal tracts (CPT) were measured by a blinded pathologist. One-way analysis of variance (ANOVA) and Bonferroni correction were used for statistical analysis. Results. A total of 52 liver biopsies were performed. The Covidien SharkCore needle had significantly greater number of CPT compared to other FNA needles. The number of “throws” did not impact the number of CPT significantly. There was no statistically significant difference in mean total specimen length between each FNA needle type. Conclusion. The Covidien SharkCore needle produced superior histological specimen by capturing more CPT, possibly due to its unique needle design.


2017 ◽  
Vol 112 ◽  
pp. S461
Author(s):  
Patrick Koo ◽  
Anand Dutta ◽  
Dorina Gui ◽  
Tao Wang ◽  
Shiro Urayama

2020 ◽  
Author(s):  
Rafael Heiss ◽  
Frank W. Roemer ◽  
Christoph Lutter ◽  
Rolf Janka ◽  
Volker Schöffl ◽  
...  

2014 ◽  
Author(s):  
Klaus Engelke ◽  
Nicolas Bouler ◽  
Oleg Museyko Fuerst ◽  
Sebastien Parratte ◽  
Thomas Fuerst ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 667-670
Author(s):  
Thomas Larrew ◽  
Mohammed Alshareef ◽  
Robert F. Murphy ◽  
Ramin Eskandari ◽  
Libby Kosnik Infinger

OBJECTIVEAlthough the advent of magnetic growing rod technology for scoliosis has provided a means to bypass multiple hardware lengthening operations, it is important to be aware that many of these same patients have a codiagnosis of hydrocephalus with magnet-sensitive programmable ventricular shunts. As the magnetic distraction of scoliosis rods has not previously been described to affect the shunt valve setting, the authors conducted an investigation to characterize the interaction between the two devices.METHODSIn this ex vivo study, the authors carried out 360 encounters between four different shunt valve types at varying distances from the magnetic external remote control (ERC) used to distract the growing rods. Valve settings were examined before and after every interaction with the remote control to determine if there was a change in the setting.RESULTSThe Medtronic Strata and Codman Hakim valves were found to have setting changes at distances of 3 and 6 inches but not at 12 inches. The Aesculap proGAV and Codman Certas valves, typically described as MRI-resistant, did not have any setting changes due to the magnetic ERC regardless of distance.CONCLUSIONSAlthough it is not necessary to check a shunt valve after every magnetic distraction of scoliosis growing rods, if there is concern that the magnetic ERC may have been within 12 inches (30 cm) of a programmable ventricular shunt valve, the valve should be checked at the bedside with a programmer or with a skull radiograph along with postdistraction scoliosis radiographs.


2016 ◽  
Vol 16 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
Erik Andrade-Jorge ◽  
Marycarmen Godínez-Victoria ◽  
Luvia Enid Sánchez-Torres ◽  
Luis Humberto Fabila-Castillo ◽  
José G. Trujillo-Ferrara

Sign in / Sign up

Export Citation Format

Share Document