Neoproterozoic (~900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton

2011 ◽  
Vol 20 (1) ◽  
pp. 243-254 ◽  
Author(s):  
Peng Peng ◽  
Ming-Guo Zhai ◽  
Qiuli Li ◽  
Fuyuan Wu ◽  
Quanlin Hou ◽  
...  
Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.


2007 ◽  
Vol 144 (3) ◽  
pp. 547-552 ◽  
Author(s):  
MINGGUO ZHAI ◽  
JINGHUI GUO ◽  
PENG PENG ◽  
BO HU

Rapakivi granites and several small leucogabbroic and gabbroic bodies are located in the Rangnim Massif, North Korea. The largest batholith in the Myohyang Mountains covers an area of 300 km2 and was intruded into Precambrian metamorphosed rocks. It has a SHRIMP U–Pb zircon weighted mean 207Pb/206Pb age of 1861 ± 7 Ma. The country rocks of rapakivi granites are Neoarchaean orthogneisses and Palaeo-Mesoproterozoic graphite-bearing metasedimentary rocks of granulite facies, and they are similar to those of the rapakivi granites and anorthosites exposed in South Korea and in the North China Craton. We conclude that the three massifs in the Korean Peninsula commonly record an identical Palaeo-Mesoproterozoic anorogenic magmatic event, indicating that they have a common Precambrian basement with the North China Craton.


Sign in / Sign up

Export Citation Format

Share Document