scholarly journals Corrigendum to “The effects of transboundary air pollution from China on ambient air quality in South Korea” [Heliyon 5 (12) (2019) e02953]

Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06283
Author(s):  
Moon Joon Kim
2019 ◽  
Vol 19 (20) ◽  
pp. 13309-13323 ◽  
Author(s):  
Steve Hung Lam Yim ◽  
Yefu Gu ◽  
Matthew A. Shapiro ◽  
Brent Stephens

Abstract. Numerous studies have reported that ambient air pollution, which has both local and long-range sources, causes adverse impacts on the environment and human health. Previous studies have investigated the impacts of transboundary air pollution (TAP) in East Asia, albeit primarily through analyses of episodic events. In addition, it is useful to better understand the spatiotemporal variations in TAP and the resultant impact on the environment and human health. This study aimed at assessing and quantifying the air quality impacts in Japan and South Korea due to local emissions and TAP from sources in East Asia - one of the most polluted regions in the world. We applied state-of-the-science atmospheric models to simulate air quality in East Asia and then analyzed the air quality and acid deposition impacts of both local emissions and TAP sources in Japan and South Korea. Our results show that ∼ 30 % of the annual average ambient PM2.5 concentrations in Japan and South Korea in 2010 were contributed to by local emissions within each country, while the remaining ∼ 70 % were contributed to by TAP from other countries in the region. More detailed analyses also revealed that the local contribution was higher in the metropolises of Japan (∼ 40 %–79 %) and South Korea (∼ 31 %–55 %) and that minimal seasonal variations in surface PM2.5 occurred in Japan, whereas there was a relatively large variation in South Korea in the winter. Further, among all five studied anthropogenic emission sectors of China, the industrial sector represented the greatest contributor to annual surface PM2.5 concentrations in Japan and South Korea, followed by the residential and power generation sectors. Results also show that TAP's impact on acid deposition (SO42- and NO3-) was larger than TAP's impact on PM2.5 concentrations (accounting for over 80 % of the total deposition), and that seasonal variations in acid deposition were similar for both Japan and South Korea (i.e., higher in both the winter and summer). Finally, wet deposition had a greater impact on mixed forests in Japan and savannas in South Korea. Given these significant impacts of TAP in the region, it is paramount that cross-national efforts should be taken to mitigate air pollution problems across East Asia.


Author(s):  
Jiban Jyoti Das

Industrialization is an important aspect of a growing economy. However, rapid industrialization has caused many serious impacts on the environment. One such impact is the deteriorating air quality, especially around industries. It is said that afforestation is the best and simplest way for improving the air quality. Also, trees and plants have been increasingly used as filters for dust particles around the home, traffic roads, etc. In scientific studies, it has also been found that trees and plant leaves can be used to assess the ambient air quality by an index called the Air pollution tolerance index. A literature search has been done on the scientific database like Sciencedirect and Researchgate to review the existing knowledge of Air pollution tolerance index and to find the tolerant and sensitive species based on it so that these species can be selectively planted to assess the ambient air quality and also to develop a better green belt around refineries and industries in Assam. The study has reviewed the linkage of the impact of air pollution on leaves of plants and trees through scientific evidence. Through such scientific reviews, the most tolerant species of trees and plants were chosen with the condition that it can grow under the climatic condition of Assam. The recommendation and suggestions of tolerant tree and plant species can be used for specific species plantations for developing green belts around refineries and industries in Assam. The recommendation of sensitive species can be used for monitoring ambient air quality with reference to other standard procedures. KEYWORDS: Air pollution tolerance index, Industries, Air- pollution, Green belt


Author(s):  
Aneri A. Desai

In Indian metropolitan cities, the extensive growth of the motor vehicles has resulted in the deterioration of environmental quality and human health. The concentrations of pollutants at major traffic areas are exceeding the permissible limits. Public are facing severe respiratory diseases and other deadly cardio-vascular diseases In India. Immediate needs for vehicular air pollution monitoring and control strategies for urban cities are necessary. Vehicular emission is the main source of deteriorating the ambient air quality of major Indian cities due to rapid urbanization. Total vehicular population is increased to 15 Lacks as per recorded data of Regional Transport Organization (RTO) till 2014-2015. This study is focused on the assessment of major air pollution parameters responsible for the air pollution due to vehicular emission. The major air pollutants responsible for air pollution due to vehicular emissions are PM10, PM2.5, Sox, Nox, HC, CO2 and CO and Other meterological parameters like Ambient temperature, Humidity, Wind direction and Wind Speed. Sampling and analysis of parameters is carried out according to National Ambient Air Quality Standards Guidelines (NAAQS) (2009) and IS 5128.


2021 ◽  
pp. 94-106
Author(s):  
Porush Kumar ◽  
Kuldeep ◽  
Nilima Gautam

Air pollution is a severe issue of concern worldwide due to its most significant environmental risk to human health today. All substances that appear in excessive amounts in the environment, such as PM10, NO2, or SO2, may be associated with severe health problems. Anthropogenic sources of these pollutants are mainly responsible for the deterioration of urban air quality. These sources include stationary point sources, mobile sources, waste disposal landfills, open burning, and similar others. Due to these pollutants, people are at increased risk of various serious diseases like breathing problems and heart disease, and the death rate due to these diseases can also increase. Hence, air quality monitoring is essential in urban areas to control and regulate the emission of these pollutants to reduce the health impacts on human beings. Udaipur has been selected for the assessment of air quality with monitored air quality data. Air quality monitoring stations in Udaipur city are operated by the CPCB (Central Pollution Control Board) and RSPCB (Rajasthan State Pollution Control Board). The purpose of this study is to characterize the level of urban air pollution through the measurement of PM10, NO2, or SO2 in Udaipur city, Rajasthan (India). Four sampling locations were selected for Udaipur city to assess the effect of urban air pollution and ambient air quality, and it was monitored for a year from 1st January 2019 to 31st December 2019. The air quality index has been calculated with measured values of PM10, NO2, and SO2. The concentration of PM10 is at a critical level of pollution and primarily responsible for bad air quality and high air quality Index in Udaipur city.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 214 ◽  
Author(s):  
Iva Hůnová

Based on an analysis of related core papers and reports, this review presents a historical perspective on ambient air pollution and ambient air quality development in the modern-day Czech Republic (CR) over the past seven decades, i.e., from the 1950s to the present. It offers insights into major air pollution problems, reveals the main hot spots and problematic regions and indicates the principal air pollutants in the CR. Air pollution is not presented as a stand-alone problem, but in the wider context of air pollution impacts both on human health and the environment in the CR. The review is arranged into three main parts: (1) the time period until the Velvet Revolution of 1989, (2) the transition period of the 1990s and (3) the modern period after 2000. Obviously, a major improvement in ambient air quality has been achieved since the 1970s and 1980s, when air pollution in the former Czechoslovakia culminated. Nevertheless, new challenges including fine aerosol, benzo[a]pyrene and ground-level ozone, of which the limit values are still vastly exceeded, have emerged. Furthermore, in spite of a significant reduction in overall emissions, the atmospheric deposition of nitrogen, in particular, remains high in some regions.


Author(s):  
Sirajuddin M Horaginamani ◽  
M Ravichandran

Though water and land pollution is very dangerous, air pollution has its own peculiarities, due to its transboundary dispersion of pollutants over the entire world. In any well planned urban set up, industrial pollution takes a back seat and vehicular emissions take precedence as the major cause of urban air pollution. Air pollution is one of the serious problems faced by the people globally, especially in urban areas of developing countries like India. All these in turn lead to an increase in the air pollution levels and have adverse effects on the health of people and plants. Western countries have conducted several studies in this area, but there are only a few studies in developing countries like India. A study on ambient air quality in Tiruchirappalli urban area and its possible effects selected plants and human health has been undertaken, which may be helpful to bring out possible control measures. Keywords: ambient air quality; respiratory disorders; APTI; human health DOI: 10.3126/kuset.v6i2.4007Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.13-19


Sign in / Sign up

Export Citation Format

Share Document