Abstract
Background
A manually beat-to-beat P-wave analysis has previously revealed the existence of multiple P-wave morphologies in patients with paroxysmal Atrial Fibrillation (AF) while on sinus rhythm, distinguishing them from healthy, AF free patients.
Purpose
The aim of this study was to investigate the effectiveness of an Automated Beat Exclusion algorithm (ABE) that excludes noisy or ectopic beats, replacing manual beat evaluation during beat-to-beat P-wave analysis, by assessing its effect on inter-rater variability and reproducibility.
Methods
Beat-to-beat P-wave morphology analysis was performed on 34 ten-minute ECG recordings of patients with a history of AF. Each recording was analyzed independently by two clinical experts for a total of four analysis runs; once with ABE and once again with the manual exclusion of ineligible beats. The inter-rater variability and reproducibility of the analysis with and without ABE were assessed by comparing the agreement of analysis runs with respect to secondary morphology detection, primary morphology ECG template and the percentage of both, as these aspects have been previously used to discriminate PAF patients from controls.
Results
Comparing ABE to manual exclusion in detecting secondary P-wave morphologies displayed substantial (Cohen"s k = 0.69) to almost perfect (k = 0.82) agreement. Area difference among auto and manually calculated main morphology templates was in every case <5% (p < 0.01) and the correlation coefficient was >0.99 (p < 0.01). Finally, the percentages of beats classified to the primary or secondary morphology per recording by each analysis were strongly correlated, for both main and secondary P-wave morphologies, ranging from ρ=0.756 to ρ=0.940 (picture)
Conclusion
The use of the ABE algorithm does not diminish inter-rater variability and reproducibility of the analysis. The primary and secondary P-wave morphologies produced by all analyses were similar, both in terms of their template and their frequency. Based on the results of this study, the ABE algorithm incorporated in the beat-to-beat P-wave morphology analysis drastically reduces operator workload without influencing the quality of the analysis.
Abstract Figure.