Infantile hemangioma is a proliferation of β4-negative endothelial cells adjacent to HLA-DR-Positive cells with dendritic cell morphology

2004 ◽  
Vol 35 (6) ◽  
pp. 739-744 ◽  
Author(s):  
Van Anh Nguyen ◽  
Christina Fürhapter ◽  
Nikolaus Romani ◽  
Florian Weber ◽  
Norbert Sepp
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chandra Chiappin Cardoso ◽  
Camila Matiollo ◽  
Carolina Hilgert Jacobsen Pereira ◽  
Janaina Santana Fonseca ◽  
Helder Emmanuel Leite Alves ◽  
...  

AbstractLiver cirrhosis is often complicated by an immunological imbalance known as cirrhosis-associated immune dysfunction. This study aimed to investigate disturbances in circulating monocytes and dendritic cells in patients with acute decompensation (AD) of cirrhosis. The sample included 39 adult cirrhotic patients hospitalized for AD, 29 patients with stable cirrhosis (SC), and 30 healthy controls (CTR). Flow cytometry was used to analyze monocyte and dendritic cell subsets in whole blood and quantify cytokines in plasma samples. Cirrhotic groups showed higher frequencies of intermediate monocytes (iMo) than CTR. AD patients had lower percentages of nonclassical monocytes than CTR and SC. Cirrhotic patients had a profound reduction in absolute and relative dendritic cell numbers compared with CTR and showed higher plasmacytoid/classical dendritic cell ratios. Increased plasma levels of IL-6, IL-10, and IL-17A, elevated percentages of CD62L+ monocytes, and reduced HLA-DR expression on classical monocytes (cMo) were also observed in cirrhotic patients. Patients with more advanced liver disease showed increased cMo and reduced tissue macrophages (TiMas) frequencies. It was found that cMo percentages greater than 90.0% within the monocyte compartment and iMo and TiMas percentages lower than 5.7% and 8.6%, respectively, were associated with increased 90-day mortality. Monocytes and dendritic cells are deeply altered in cirrhotic patients, and subset profiles differ between stable and advanced liver disease. High cMo and low TiMas frequencies may be useful biomarkers of disease severity and mortality in liver cirrhosis.


2019 ◽  
Vol 11 (10) ◽  
pp. 999-1003 ◽  
Author(s):  
Michael R Levitt ◽  
Christian Mandrycky ◽  
Ashley Abel ◽  
Cory M Kelly ◽  
Samuel Levy ◽  
...  

ObjectivesTo study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm.Materials and methodsA 3D-printed model of a cerebral aneurysm was created from a patient’s angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations.ResultsThe model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations.ConclusionsCreating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.


Oncotarget ◽  
2016 ◽  
Vol 7 (26) ◽  
pp. 39421-39435 ◽  
Author(s):  
Ailsa J. Christiansen ◽  
Lothar C. Dieterich ◽  
Isabel Ohs ◽  
Samia B. Bachmann ◽  
Roberta Bianchi ◽  
...  

2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Paula Stieven Hünning ◽  
Maria Cristina Caldart de Andrade ◽  
André Carissimi ◽  
João Pigatto

ABSTRACT: The aim of this study was to evaluate the morphology of endothelial cells from different areas of the cornea of dogs. Twenty healthy eyes from 10 dogs, females or males, of different ages were studied. Corneal endothelium morphology of superior, inferior, central, nasal and temporal areas was assessed by 0.2% alizarin red staining using an optic microscope. One hundred endothelial cells from each corneal area were analyzed. In all areas of the cornea studied were found endothelial cells with four sides, five sides, six sides and seven sides. There was no significant difference regarding endothelial cell morphology in all corneal regions evaluated. Thus, the morphology of the central cornea area represents the entire endothelial mosaic and may be applied to peripheral areas. Therefore, analysis of the central area is sufficient to estimate the shape of endothelial cells of peripheral areas of healthy dog corneas.


2013 ◽  
Vol 6 (2) ◽  
pp. 574-578 ◽  
Author(s):  
JUN-BO TU ◽  
RUI-ZHAO MA ◽  
QIANG DONG ◽  
FEI JIANG ◽  
XIAO-YI HU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document