An inverse hyperbolic heat conduction problem in estimating pulse heat flux with a dual-phase-lag model

Author(s):  
Tser-Son Wu ◽  
Haw-Long Lee ◽  
Win-Jin Chang ◽  
Yu-Ching Yang
2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Simon Julius ◽  
Boris Leizeronok ◽  
Beni Cukurel

Finite integral transform techniques are applied to solve the one-dimensional (1D) dual-phase heat conduction problem, and a comprehensive analysis is provided for general time-dependent heat generation and arbitrary combinations of various boundary conditions (Dirichlet, Neumann, and Robin). Through the dependence on the relative differences in heat flux and temperature relaxation times, this analytical solution effectively models both parabolic and hyperbolic heat conduction. In order to demonstrate several exemplary physical phenomena, four distinct cases that illustrate the wavelike heat conduction behavior are presented. In the first model, following an initial temperature spike in a slab, the thermal evolution portrays immediate dissipation in parabolic systems, whereas the dual-phase solution depicts wavelike temperature propagation—the intensity of which depends on the relaxation times. Next, the analysis of periodic surface heat flux at the slab boundaries provides evidence of interference patterns formed by temperature waves. In following, the study of Joule heating driven periodic generation inside the slab demonstrates that the steady-periodic parabolic temperature response depends on the ratio of pulsatile electrical excitation and the electrical resistivity of the slab. As for the dual-phase model, thermal resonance conditions are observed at distinct excitation frequencies. Building on findings of the other models, the case of moving constant-amplitude heat generation is considered, and the occurrences of thermal shock and thermal expansion waves are demonstrated at particular conditions.


2018 ◽  
Vol 14 (5) ◽  
pp. 837-856 ◽  
Author(s):  
Gaurav Mittal ◽  
Vinayak Kulkarni

Purpose The purpose of this paper is to frame a dual-phase-lag model using the fractional theory of thermoelasticity with relaxation time. The generalized Fourier law of heat conduction based upon Tzou model that includes temperature gradient, the thermal displacement and two different translations of heat flux vector and temperature gradient has been used to formulate the heat conduction model. The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration. Design/methodology/approach The work presented in this manuscript proposes a dual-phase-lag mathematical model of a thick circular plate in a finite cylindrical domain subjected to axis-symmetric heat flux. The model has been designed in the context of fractional thermoelasticity by considering two successive terms in Taylor’s series expansion of fractional Fourier law of heat conduction in the two different translations of heat flux vector and temperature gradient. The analytical results have been obtained in Laplace transform domain by transforming the original problem into eigenvalue problem using Hankel and Laplace transforms. The numerical inversions of Laplace transforms have been achieved using the Gaver−Stehfast algorithm, and convergence criterion has been discussed. For illustrative purpose, the dual-phase-lag model proposed in this manuscript has been applied to a periodically varying heat source. The numerical results have been depicted graphically and compared with classical, fractional and generalized thermoelasticity for various fractional orders under consideration. Findings The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration. This model has been applied to study the thermal effects in a thick circular plate subjected to a periodically varying heat source. Practical implications A dual-phase-lag model can effectively be incorporated to study the transient heat conduction problems for an exponentially decaying pulse boundary heat flux and/or for a short-pulse boundary heat flux in long solid tubes and cylinders. This model is also applicable to study the various effects of the thermal lag ratio and the shift time. These dual-phase-lag models are also practically applicable in the problems of modeling of nanoscale heat transport problems of semiconductor devices and accordingly semiconductors can be classified as per their ability of heat conduction. Originality/value To the authors’ knowledge, no one has discussed fractional thermoelastic dual-phase-lag problem associated with relaxation time in a finite cylindrical domain for a thick circular plate subjected to an axis-symmetric heat source. This is the latest and novel contribution to the field of thermal mechanics.


2014 ◽  
Vol 06 (01) ◽  
pp. 1450002 ◽  
Author(s):  
A. H. AKBARZADEH ◽  
Z. T. CHEN

In the present work, the dual phase lag heat conduction in functionally graded hollow spheres is investigated under spherically symmetric and axisymmetric thermal loading. The heat conduction equation is given based on the dual phase lag theory to consider the details of energy transport in the material in comparison with the non-Fourier hyperbolic heat conduction. All the material properties of the sphere are taken to vary continuously along the radial direction following a power-law with arbitrary non-homogeneity indices except the phase lags which are assumed to be constant for simplicity. The specified spherically symmetric and axisymmetric boundary conditions of the sphere lead to a 1D and 2D heat conduction problem, respectively. Employing the Laplace transform to eliminate the time dependency of the problem, analytical solutions are obtained for the temperature and heat flux. The final results in the time domain are obtained by a numerical Laplace inversion method. The speed of thermal wave in the functionally graded sphere based on the dual phase lag is compared with that of the hyperbolic heat conduction. Furthermore, the numerical results are shown to clarify the effects of phase lags and non-homogeneity indices on the thermal response. The current results are verified with those reported in the literature.


Volume 4 ◽  
2004 ◽  
Author(s):  
Illayathambi Kunadian ◽  
J. M. McDonough ◽  
K. A. Tagavi

In the present work we investigate femtosecond laser heating of nanoscale metal films irradiated by a pulsating laser in three dimensions using the Dual Phase Lag (DPL) model and consider laser heating at different locations on the metal film. A numerical solution based on an explicit finite-difference method has been employed to solve the DPL heat conduction equation. The stability criterion for selecting a time step size is obtained using von Neumann eigenmode analysis, and grid function convergence tests have been performed. The energy absorption rate, which is used to model femtosecond laser heating, has been modified to accommodate for the three-dimensional laser heating. We compare our results with classical diffusion and hyperbolic heat conduction models and demonstrate significant differences among these three approaches. The present research enables us to study ultrafast laser heating mechanisms of nano-films in 3D.


2019 ◽  
Vol 17 (09) ◽  
pp. 1950069
Author(s):  
Wen-Lih Chen ◽  
Kuo-Chi Liu ◽  
Yu-Ching Yang ◽  
Haw-Long Lee ◽  
Win-Jin Chang

An inverse analysis technique based on the conjugate gradient method (CGM) and the discrepancy principle is employed to estimate the time-wise variation of the unknown cooling heat flux in the spray cooling of a hot surface. In contrast to previous studies, the heat conduction equation of the cooled surface is formulated using a dual-phase-lag (DPL) model. In addition, no assumptions are made regarding the functional form of the cooling heat flux. The simulation data required to conduct the inverse analysis are generated by adding random errors to the calculated exact temperatures at the boundaries and interior of the hot body. The validity of the inverse solutions is demonstrated numerically by means of two illustrative examples. Moreover, the sensitivity of the estimation results to the measurement error and measurement location is systematically explored. Overall, the results show that the proposed method provides a robust and accurate approach for estimating the unknown time-dependent cooling heat flux in typical industrial spray cooling applications.


Author(s):  
C. Liu ◽  
B. Q. Li ◽  
C. Mi

This paper addresses the fast-transient heat conduction phenomena of a gold nanoparticle embedded in cancerous tissue in hyperthermia treatment. Dual phase lag model in spherical coordinates was employed and a semi-analytical solution of 1-D non-homogenous dual phase lag equation was presented. Results show that transient temperature depends dramatically on the lagging characteristic time of the surrounding tissue. Temperature predicted by dual phase lag model greatly exceeds that predicted by a classical diffusion model, with either a constant source or a pulsed source. This phenomenon is mainly attributed by the phase lag of heat flux of tissue. The overheating in short time scale and the consequent biological effect needs to be paid more attention in the related study.


Sign in / Sign up

Export Citation Format

Share Document