Down-regulation of RAC2 by small interfering RNA restrains the progression of osteosarcoma by suppressing the Wnt signaling pathway

2019 ◽  
Vol 137 ◽  
pp. 1221-1231 ◽  
Author(s):  
Peng Xia ◽  
Xu Gao ◽  
Liwei Shao ◽  
Qi Chen ◽  
Fang Li ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2398-2398
Author(s):  
Elena K Siapati ◽  
Magda Papadaki ◽  
Zoi Kozaou ◽  
Erasmia Rouka ◽  
Evridiki Michali ◽  
...  

Abstract Abstract 2398 Poster Board II-375 B-catenin is the central effector molecule of the canonical wnt signaling pathway which governs cell fate and differentiation during embryogenesis as well as self-renewal of hematopoietic stem cells. Deregulation of the pathway has been observed in various malignancies including myeloid leukemias where over-expression of β-catenin is an independent adverse prognostic factor. In the present study we examined the functional outcome of stable β-catenin down-regulation through lentivirus-mediated expression of short hairpin RNA (shRNA). Reduction of the β-catenin levels in AML cell lines and patient samples diminished their in vitro proliferation ability without significantly affecting cell viability. In order to study the role of β-catenin in vivo, we transplanted leukemic cell lines with control or reduced levels of β-catenin in NOD/SCID animals and analyzed the engraftment levels in the bone marrow. We observed that while the immediate homing of the cells was not affected by the β-catenin levels, the bone marrow engraftment was directly dependent on its levels. Subsequent examination of bone marrow sections revealed that the reduced engraftment was partly due to the inability of the cells with lower β-catenin levels to dock to the endosteal niches, a finding that was confirmed in competitive repopulation assays with untransduced cells. When we examined the expression levels of adhesion molecules and integrins in engrafted cells in vivo, we observed a significant down-regulation of CD44 expression, a molecule that participates in the interaction of HSCs with the niche. Gene expression analysis of the components of the wnt signaling pathway showed that the pathway is subject to tight transcriptional regulation with minor expression deviations. We did, however, observe an up-regulation in components that participate in the non-canonical wnt signaling pathways such as the WNT5B ligand. Ongoing experiments in normal cord blood CD34+ cells will determine the in vivo role of β-catenin signaling in normal hematopoietic progenitors. In conclusion, our study showed that β-catenin comprises an integral part in the development and progression of AML in vivo, indicating that manipulation of the wnt pathway may hold a therapeutic potential in the management of AML. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 12 (4) ◽  
pp. 614-625 ◽  
Author(s):  
Pedro L. Azevedo ◽  
Nathalia C.A. Oliveira ◽  
Stephany Corrêa ◽  
Morgana T.L. Castelo-Branco ◽  
Eliana Abdelhay ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. S41-S41
Author(s):  
Yang Bi ◽  
Yun He ◽  
Tingyu Li ◽  
Tao Feng ◽  
Tongchuan He

2006 ◽  
Vol 175 (4S) ◽  
pp. 136-136
Author(s):  
Ralph Buttyan ◽  
Xuezhen Yang ◽  
Min-Wei Chen ◽  
Debra L. Bemis ◽  
Mitchell C. Benson ◽  
...  

Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
A Tretyn ◽  
KD Schlüter ◽  
W Janssen ◽  
HA Ghofrani ◽  
F Grimminger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document