Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink

Author(s):  
P. Naphon ◽  
L. Nakharintr ◽  
S. Wiriyasart
2021 ◽  
Author(s):  
M. P. Dhanishk ◽  
P. Selvakumar ◽  
V. Ashwin ◽  
P. N. ArunKumar

2015 ◽  
Vol 813-814 ◽  
pp. 685-689
Author(s):  
M. Vijay Anand Marimuthu ◽  
B. Venkatraman ◽  
S. Kandhasamy

This paper investigates the performance and characteristics of saw tooth shape micro channel in the theoretical level. If the conduct area of the nano fluid increases the heat transfer also increases. The performance curve has drawn Reynolds number against nusselt number, heat transfer co efficient. Pressure drop plays an important role in this device. If pressure drop is high the heat transfer increases. The result in this experiment shows clearly that the heat transfer is optimized.


Author(s):  
Chun K. Kwok ◽  
Matthew M. Asada ◽  
Jonathan R. Mita ◽  
Weilin Qu

This paper presents an experimental study of single-phase heat transfer characteristics of binary methanol-water mixtures in a micro-channel heat sink containing an array of 22 microchannels with 240μm × 630μm cross-section. Pure water, pure methanol, and five methanol-water mixtures with methanol molar fraction of 16%, 36%, 50%, 63% and 82% were tested. Key parametric trends were identified and discussed. The experimental study was complemented by a three-dimensional numerical simulation. Numerical predictions and experimental data are in good agreement with a mean absolute error (MAE) of 0.87%.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Abstract Nanoliquid impingement heat transfer with phase change material (PCM) installed radial system is considered. Study is performed by using finite element method for various values of Reynolds numbers (100 ≤ Re ≤ 300), height of PCM (0.25H ≤ hpcm = 0.7H ≤ 0.75H) and plate spacing (0.15H ≤ hpcm = 0.7H ≤ 0.40H). Different configurations with using water, nanoliquid and nanoliquid+PCM are compared in terms of heat transfer improvement. Thermal performance is improved by using PCM while best performance is achieved with nanoliquid and PCM installed configuration. At Re=100 and Re=300, heat transfer improvements of 26% and 25.5% are achieved with nanoliquid+PCM system as compared to water without PCM. Height of the PCM layer also influences the heat transfer dynamic behavior while there is 12.6% variation in the spatial average heat transfer of the target surface with the lowest and highest PCM height while discharging time increases by about 76.5%. As the spacing between the plates decreases, average heat transfer rises and there is 38% variation.


Sign in / Sign up

Export Citation Format

Share Document