Evaluating the influence of radiative heat flux on convective heat transfer from a vertical plate in air using an improved heating plate

Author(s):  
Michał RYMS ◽  
Witold M. LEWANDOWSKI
Author(s):  
Nathan J. Greiner ◽  
Marc D. Polanka ◽  
James L. Rutledge ◽  
Andrew T. Shewhart

Experiments measuring film cooling performance are often performed near room temperature over small ranges of driving temperature. For such experiments, fluid properties are nearly constant within the boundary layer and radiative heat transfer is negligible. Consequently, the heat flux to the wall is a linear function of driving temperature. Therefore, the convective heat transfer coefficient and adiabatic wall temperature can be extracted from heat flux measurements at two or more driving temperatures. For large driving temperatures, like those seen in gas turbine engines, significant property variations exist within the boundary layer. In addition, radiative heat transfer becomes sufficiently large such that it can no longer be neglected. As a result, heat flux becomes a non-linear function of driving temperature. Thus, for these high temperature cases, ambient temperature methods utilizing a linear heat flux assumption cannot be employed to characterize the convective heat transfer. The present study experimentally examines the non-linearity of heat flux for large driving temperatures flowing over a flat plate. The results are first used to validate the temperature ratio method presented in a previous study to account for variable properties within a boundary layer. This validation highlighted the need to account for the radiative component of the overall heat transfer. A method is subsequently proposed to account for the effects of both variable properties and radiation simultaneously. Finally, the method is validated with the experimental data. While this methodology was developed in a flat plate rig, it is applicable to any relevant configuration in a hot environment. The method is general and independent of the overall radiative component magnitude and direction. Overall, the technique provides a means of quantifying the impact of both variable properties and the radiative flux on the conductive heat transfer to or from a surface in a single experiment.


2021 ◽  
pp. 875608792110258
Author(s):  
Azhar Ali ◽  
Dil Nawaz Khan Marwat ◽  
Aamir Ali

Flows and heat transfer over stretching/shrinking and porous surfaces are studied in this paper. Unusual and generalized similarity transformations are used for simplifying governing equations. Current model includes all previous cases of stretched/shrunk flows with thermal effects discussed so far. Moreover, we present three different cases of thermal behavior (i) prescribed surface temperature (ii) Variable/uniform convective heat transfer at plat surface and (iii) prescribed variable/uniform heat flux. Stretching/shrinking velocity Uw(x), porosity [Formula: see text], heat transfer [Formula: see text], heat flux [Formula: see text] and convective heat transfer at surface are axial coordinate dependent. Boundary layer equations and boundary conditions are transformed into nonlinear ODEs by introducing unusual and generalized similarity transformations for the variables. These simplified equations are solved numerically. Final ODEs represent suction/injection, stretching/shrinking, temperature, heat flux, convection effects and specific heat. This current problem encompasses all previous models as special cases which come under the scope of above statement (title). The results of classical models are scoped out as a special case by assigning proper values to the parameters. Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter. A stability analysis is accomplished and apprehended in order to establish a criterion for determining linearly stable and physically compatible solutions. The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable (uniform) thickness with variable (uniform) stretching/shrinking and injection/suction velocities.


Author(s):  
Jorge Saavedra ◽  
Venkat Athmanathan ◽  
Guillermo Paniagua ◽  
Terrence Meyer ◽  
Doug Straub ◽  
...  

Abstract The aerothermal characterization of film cooled geometries is traditionally performed at reduced temperature conditions, which then requires a debatable procedure to scale the convective heat transfer performance to engine conditions. This paper describes an alternative engine-scalable approach, based on Discrete Green’s Functions (DGF) to evaluate the convective heat flux along film cooled geometries. The DGF method relies on the determination of a sensitivity matrix that accounts for the convective heat transfer propagation across the different elements in the domain. To characterize a given test article, the surface is discretized in multiple elements that are independently exposed to perturbations in heat flux to retrieve the sensitivity of adjacent elements, exploiting the linearized superposition. The local heat transfer augmentation on each segment of the domain is normalized by the exposed thermal conditions and the given heat input. The resulting DGF matrix becomes independent from the thermal boundary conditions, and the heat flux measurements can be scaled to any conditions given that Reynolds number, Mach number, and temperature ratios are maintained. The procedure is applied to two different geometries, a cantilever flat plate and a film cooled flat plate with a 30 degree 0.125” cylindrical injection orifice with length-to-diameter ratio of 6. First, a numerical procedure is applied based on conjugate 3D Unsteady Reynolds Averaged Navier Stokes simulations to assess the applicability and accuracy of this approach. Finally, experiments performed on a flat plate geometry are described to validate the method and its applicability. Wall-mounted thermocouples are used to monitor the surface temperature evolution, while a 10 kHz burst-mode laser is used to generate heat flux addition on each of the discretized elements of the DGF sensitivity matrix.


Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the influence of the heat flux and mass velocity on convective heat transfer performance of FC-72 in a rectangular channel of 20mm in width and 2 mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature is maintained at 30°C. The total length of the test channel is 113 mm, with a heated length of 25mm. The flow rate varies between 80 and 960 ml/min, and the heat flux sets between 18 and 50 W/cm2. The experimental results show that the controlling variable is heat flux instead of flow rate because of the boiling activities in FC-72. At a fixed flow rate, the pin-finned surface yields up to 20% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface.


Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Jorge Saavedra ◽  
Venkat Athmanathan ◽  
Guillermo Paniagua ◽  
Terrence Meyer ◽  
Doug Straub ◽  
...  

Abstract The aerothermal characterization of film-cooled geometries is traditionally performed at reduced temperature conditions, which then requires a debatable procedure to scale the convective heat transfer performance to engine conditions. This paper describes an alternative engine-scalable approach, based on Discrete Green’s Functions (DGF) to evaluate the convective heat flux along film-cooled geometries. The DGF method relies on the determination of a sensitivity matrix that accounts for the convective heat transfer propagation across the different elements in the domain. To characterize a given test article, the surface is discretized in multiple elements that are independently exposed to perturbations in heat flux to retrieve the sensitivity of adjacent elements, exploiting the linearized superposition. The local heat transfer augmentation on each segment of the domain is normalized by the exposed thermal conditions and the given heat input. The resulting DGF matrix becomes independent from the thermal boundary conditions, and the heat flux measurements can be scaled to any conditions given that Reynolds number, Mach number, and temperature ratios are maintained. The procedure is applied to two different geometries, a cantilever flat plate and a film-cooled flat plate with a 30 degree 0.125 in. cylindrical injection orifice with length-to-diameter ratio of 6. First, a numerical procedure is applied based on conjugate 3D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations to assess the applicability and accuracy of this approach. Finally, experiments performed on a flat plate geometry are described to validate the method and its applicability. Wall-mounted thermocouples are used to monitor the surface temperature evolution, while a 10 kHz burst-mode laser is used to generate heat flux addition on each of the discretized elements of the DGF sensitivity matrix.


1994 ◽  
Vol 76 (5) ◽  
pp. 2084-2094 ◽  
Author(s):  
M. B. Ducharme ◽  
P. Tikuisis

The objective of the present study was to investigate the relative contribution of the convective heat transfer in the forearm and hand to 1) the total heat loss during partial immersion in cold water [water temperature (Tw) = 20 degrees C] and 2) the heat gained during partial immersion in warm water (Tw = 38 degrees C). The heat fluxes from the skin of the forearm and finger were continuously monitored during the 3.5-h immersion of the upper limb (forearm and hand) with 23 recalibrated heat flux transducers. The last 30 min of the partial immersion were conducted with an arterial occlusion of the forearm. The heat flux values decreased during the occlusion period at Tw = 20 degrees C and increased at Tw = 38 degrees C for all sites, plateauing only for the finger to the value of the tissue metabolic rate (124.8 +/- 29.0 W/m3 at Tw = 20 degrees C and 287.7 +/- 41.8 W/m3 at Tw = 38 degrees C). The present study shows that, at thermal steady state during partial immersion in water at 20 degrees C, the convective heat transfer between the blood and the forearm tissue is the major heat source of the tissue and accounts for 85% of the total heat loss to the environment. For the finger, however, the heat produced by the tissue metabolism and that liberated by the convective heat transfer are equivalent. At thermal steady state during partial immersion in water at 38 degrees C, the blood has the role of a heat sink, carrying away from the limb the heat gained from the environment and, to a lesser extent (25%), the metabolic and conductive heats. These results suggest that during local cold stress the convective heat transfer by the blood has a greater role than that suggested by previous studies for the forearm but a lesser role for the hand.


Author(s):  
Patrick H. Oosthuizen ◽  
Jane T. Paul

Two-dimensional natural convective heat transfer from vertical plates has been extensively studied. However, when the width of the plate is relatively small compared to its height, the heat transfer rate can be greater than that predicted by these two-dimensional flow results. Because situations that can be approximately modelled as narrow vertical plates occur in a number of practical situations, there exists a need to be able to predict heat transfer rates from such narrow plates. Attention has here been given to a plate with a uniform surface heat flux. The magnitude of the edge effects will, in general, depend on the boundary conditions existing near the edge of the plate. To examine this effect, two situations have been considered. In one, the heated plate is imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane while in the second there are plane adiabatic surfaces above and below the heated plate but the edge of the plate is directly exposed to the surrounding fluid. The flow has been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. It has also been assumed that the flow is symmetrical about the vertical centre-plane of the plate. The solution has been obtained by numerically solving the full three-dimensional form of the governing equations, these equations being written in terms of dimensionless variables. Results have only been obtained for a Prandtl number of 0.7. A wide range of the other governing parameters have been considered for both edge situations and the conditions under which three dimensional flow effects can be neglected have been deduced.


Sign in / Sign up

Export Citation Format

Share Document