Hypervelocity impact tests on a Whipple shield using a flyer plate in the velocity range from 4 km/s to 12 km/s

Author(s):  
Zhenfei Song ◽  
Xiaoyang Pei ◽  
Jidong Yu ◽  
Jianheng Zhao ◽  
Fuli Tan
2010 ◽  
Vol 452-453 ◽  
pp. 385-388
Author(s):  
Bin Jia ◽  
Gao Jian Liao ◽  
Hai Peng Gong ◽  
Bao Jun Pang

All spacecrafts in earth orbit are subject to hypervelocity impact by micro-meteoroids and space debris, which can in turn lead to significant damage and catastrophic failure of spacecraft. Porous volcano rock was adopted as one of micro-meteoroid material due to their similar physical and geometric features. Two-stage light gas gun experiments were carried out for a 6mm diameter volcano rock projectile impact on an Al-Whipple shield within the speed range from 1 km/s to 3 km/s. An ANSYS/LS-DYNA software was employed and justified by experimental results, in which a porous geometrical model was established for volcano rock projectile. The higher speed range was extended from 3 km/s to 10 km/s by numerical simulation. The results of experiments and numerical simulation indicated that major damage on rear wall of the Whipple shield impacted by volcano rock projectile is caused by the fragments of bumper of the shield, which is different from that of aluminum projectile. And 5.5km/s is the critical speed of a 6mm diameter volcano rock projectile impact on the Whipple shield investigated.


2020 ◽  
Vol 10 (4) ◽  
pp. 1393
Author(s):  
Xiaofeng Wang ◽  
Jingbo Liu ◽  
Biao Wu ◽  
Defeng Kong ◽  
Jiarong Huang ◽  
...  

To understand and analyze crater damage of rocks under hypervelocity impact, the hypervelocity impact cratering of 15 shots of hemispherical-nosed cylindrical projectiles into granite targets was studied within the impact velocity range of 1.91–3.99 km/s. The mass of each projectile was 40 g, and the length–diameter ratio was 2. Three types of metal material were adopted for the projectiles, including titanium alloy with a density of 4.44 g/cm3, steel alloy with a density of 7.81 g/cm3, and tungsten alloy with a density of 17.78 g/cm3. The projectile–target density ratio (ρp/ρt) ranged from 1.71 to 6.86. The depth–diameter ratios (H/D) of the craters yielded from the experiments were between 0.14 and 0.24. The effects of ρp/ρt and the impact velocity on the morphologies of the crater were evaluated. According to the experimental results, H/D of craters is negatively correlated with the impact velocity, whereas the correlation between H/D and ρp/ρt is weak positive. The crater parameters were expressed as power law relations of impact parameters by using scaling law analysis. The multiple regression analysis was utilized to obtain the coefficients and the exponents of the relation equations. The predicted values of the regression equations were close to the experimental results.


2013 ◽  
Vol 834-836 ◽  
pp. 825-828
Author(s):  
Jun Yin ◽  
Yu Wang Yang ◽  
Xia Yun Hu ◽  
Cheng Cheng Yong

For almost all materials the hypervelocity regime has been reached when the impact speed above 2 km/s. A double-barreled two-stage light gas gun (TSLGG) system used for the hypervelocity impact tests is described. The proposed TSLGG can accelerate 50 g projectile masses up to velocities of 2.2 km/s. The craters produced with this equipment reach a diameter of up to 20 cm, a size unique in laboratory cratering research. The experiment results show our TSLGG system work effectively, velocity of the projectile mass is measured highly accurate by means of the proposed optical method.


2016 ◽  
Vol 119 ◽  
pp. 48-59 ◽  
Author(s):  
Xiaotian Zhang ◽  
Tao Liu ◽  
Xiaogang Li ◽  
Guanghui Jia

1998 ◽  
Author(s):  
Satoshi Nonaka ◽  
Kazuyoshi Takayama ◽  
Seishirou Kibe

2013 ◽  
Vol 577-578 ◽  
pp. 629-632
Author(s):  
Gong Shun Guan ◽  
Qiang Bi ◽  
Yu Zhang

Shield structure based on ceramic coating on aluminum bumper was designed, and a series of hypervelocity impact tests were practiced with a two-stage light gas gun facility. Impact velocities were varied between1.5km/s and 5.0km/s. The diameter of projectiles were 3.97mm and 6.35mm respectively. The impact angle was 0°. The damage of the ceramic coating on aluminum bumper under hypervelocity impact was studied. It was found that the ceramic coating on aluminum bumper could help enhancing the protection performance of shield to resist hypervelocity impact. The results indicated when the ceramic coating is on the front side of aluminum bumper, it was good for comminuting projectile and weakening the kinetic energy of projectile. For a certain aluminum bumper, existing a critical thickness of ceramic coating in which capability of Whipple shield to resist hypervelocity impact is the best. On this basis, the proposal of the optimum design for ceramic coating on aluminum bumper was made.


Sign in / Sign up

Export Citation Format

Share Document