<p>Organic light emitting diodes (OLEDs) are an emerging technology based on electrically conducting polymer films, with great promise for large area lighting and flexible ultra-thin displays. However, despite the rapid technological development, there is still a poor understanding of the degradation and spindependent recombination processes that take place inside an OLED. In this thesis, Electron Paramagnetic Resonance (EPR) was used to investigate these processes in blue-emitting OLEDs. A successful procedure was developed and refined for fabricating OLEDs with the structure ITO/PEDOT:PSS/emissive layer/Al/Ag, with and without the PEDOT:PSS hole-transporting layer. The organic emissive layer was either F8BT, PFO, or PVK:OXD-7:FIrpic (PB). These OLEDs were fabricated in air and with a geometry optimised for EPR experiments. Critical features for satisfactory devices were found to be a sufficiently thick organic layer and minimal exposure to the air. A compact apparatus was developed for simultaneous light output, current, and voltage measurements on the OLEDs while in an inert glove box environment. Electroluminescence and current-voltage parameters measured for these devices showed predominantly trap-controlled space-charge-limited conduction. OLEDs with PFO as the emissive layer and with a PEDOT:PSS layer were investigated with conventional, electrically-detected (ED) and optically-detected (OD) EPR techniques. EDEPR and ODEPR signals were observed at ~9.2 GHz and in the low (<50 mT) and high (~330 mT) magnetic field regimes and were found to change markedly with time during operation as the device degraded. The low field signals initially showed a composite broad quenching and superimposed narrow enhancing response centred around zero field strength. These signals were attributed to magneto-resistance (MR) and magneto-electroluminescence (MEL). Following operational ageing, a third, narrow quenching line was observed in the MR and the ratio of the initial two MR responses changed substantially. These effects are tentatively attributed to a hyperfine interaction. For both EDEPR and ODEPR, quenching high field resonances with a g-value (gyromagnetic ratio) of 2.003±0.001 were observed. The current-quenching resonance gradually diminished during operation and after 4–5 hours was replaced by a current-enhancing resonance. The appearance of this latter resonance could be explained by chemical changes in the OLED due to the diffusion of oxygen through the device from the oxygen-plasma-treated ITO. A working model is proposed which can explain this observed change as spindependent trapping and recombination at free radicals, although the model requires further experimentation to test its validity.</p>