scholarly journals Serum microRNAs as xerostomia biomarkers in oropharyngeal cancer patients undergoing radiotherapy

Author(s):  
Bartłomiej Tomasik ◽  
Anna Papis-Ubych ◽  
Konrad Stawiski ◽  
Prof. Jacek Fijuth ◽  
Piotr Kędzierawski ◽  
...  
2020 ◽  
Vol 152 ◽  
pp. S170
Author(s):  
B. Tomasik ◽  
A. Papis-Ubych ◽  
J. Fijuth ◽  
P. Kędzierawski ◽  
J. Sadowski ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 786
Author(s):  
Daniel M. Lang ◽  
Jan C. Peeken ◽  
Stephanie E. Combs ◽  
Jan J. Wilkens ◽  
Stefan Bartzsch

Infection with the human papillomavirus (HPV) has been identified as a major risk factor for oropharyngeal cancer (OPC). HPV-related OPCs have been shown to be more radiosensitive and to have a reduced risk for cancer related death. Hence, the histological determination of HPV status of cancer patients depicts an essential diagnostic factor. We investigated the ability of deep learning models for imaging based HPV status detection. To overcome the problem of small medical datasets, we used a transfer learning approach. A 3D convolutional network pre-trained on sports video clips was fine-tuned, such that full 3D information in the CT images could be exploited. The video pre-trained model was able to differentiate HPV-positive from HPV-negative cases, with an area under the receiver operating characteristic curve (AUC) of 0.81 for an external test set. In comparison to a 3D convolutional neural network (CNN) trained from scratch and a 2D architecture pre-trained on ImageNet, the video pre-trained model performed best. Deep learning models are capable of CT image-based HPV status determination. Video based pre-training has the ability to improve training for 3D medical data, but further studies are needed for verification.


2019 ◽  
Vol 105 (1) ◽  
pp. E414-E415
Author(s):  
T.S. Deshpande ◽  
G.B. Gunn ◽  
C.D. Fuller ◽  
R. Ye ◽  
D.I. Rosenthal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document