Semitheoretical formulation of annular flow void fraction using the principle of minimum entropy production

2020 ◽  
Vol 158 ◽  
pp. 106522 ◽  
Author(s):  
Niccolò Giannetti ◽  
Seiichi Yamaguchi ◽  
Kiyoshi Saito ◽  
Hiroaki Yoshimura
2004 ◽  
Vol 50 (170) ◽  
pp. 342-352 ◽  
Author(s):  
Perry Bartelt ◽  
Othmar Buser

AbstractAn essential problem in snow science is to predict the changing form of ice grains within a snow layer. Present theories are based on the idea that form changes are driven by mass diffusion induced by temperature gradients within the snow cover. This leads to the well-established theory of isothermal- and temperature-gradient metamorphism. Although diffusion theory treats mass transfer, it does not treat the influence of this mass transfer on the form — the curvature radius of the grains and bonds — directly. Empirical relations, based on observations, are additionally required to predict flat or rounded surfaces. In the following, we postulate that metamorphism, the change of ice surface curvature and size, is a process of thermodynamic optimization in which entropy production is minimized. That is, there exists an optimal surface curvature of the ice grains for a given thermodynamic state at which entropy production is stationary. This state is defined by differences in ice and air temperature and vapor pressure across the interfacial boundary layer. The optimal form corresponds to the state of least wasted work, the state of minimum entropy production. We show that temperature gradients produce a thermal non-equilibrium between the ice and air such that, depending on the temperature, flat surfaces are required to mimimize entropy production. When the temperatures of the ice and air are equal, larger curvature radii are found at low temperatures than at high temperatures. Thus, what is known as isothermal metamorphism corresponds to minimum entropy production at equilibrium temperatures, and so-called temperature-gradient metamorphism corresponds to minimum entropy production at none-quilibrium temperatures. The theory is in good agreement with general observations of crystal form development in dry seasonal alpine snow.


Author(s):  
Ahmet Selim Dalkilic ◽  
Suriyan Laohalertdecha ◽  
Somchai Wongwises

Void fractions are determined in vertical downward annular two-phase flow of R134a inside 8.1 mm i.d. smooth tube. The experiments are done at average saturated condensing temperatures of 40 and 50°C. The average qualities are between 0.84–0.94. The mass fluxes are around 515 kg m−2s−1. The experimental setup is explained elaborately. Comparisons between the void fraction determined from 35 void fraction correlations are done. According to the use of various horizontal and vertical annular flow void fraction models together with the present experimental condensation heat transfer data, similar void fraction results were obtained mostly for the smooth tube. The experimental friction factors obtained from void fraction correlations are compared with the friction factors determined from graphical information provided by Bergelin et. al. Effect of void fraction alteration on the momentum pressure drop is also presented.


Sign in / Sign up

Export Citation Format

Share Document