scholarly journals Falls from Height: Ambulation Following Spinal Cord Injury and Lower Extremity Polytrauma

2021 ◽  
pp. 101137
Author(s):  
Alexis Gutierrez ◽  
Rachel Blue ◽  
Patricia Zadnik-Sullivan ◽  
Blair Ashley ◽  
Samir Mehta ◽  
...  
2006 ◽  
Vol 29 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Lee Stoner ◽  
Manning Sabatier ◽  
Leslie VanhHiel ◽  
Danielle Groves ◽  
David Ripley ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
Author(s):  
Thomas C. Bulea ◽  
Ronald J. Triolo

A walker capable of providing vertical lift support can improve independence and increase mobility of individuals living with spinal cord injury (SCI). Using a novel lifting mechanism, a walker has been designed to provide sit-to-stand assistance to individuals with partially paralyzed lower extremity muscles. The design was verified through experiments with one individual with SCI. The results show the walker is capable of reducing the force demands on the upper and lower extremity muscles during sit-to-stand transition compared to standard walkers. The walker does not require electrical power and no grip force or harness is necessary during sit-to-stand operation, enabling its use by individuals with limited hand function. The design concept can be extended to aid other populations with lower extremity weakness.


2019 ◽  
Vol 19 (08) ◽  
pp. 1940060
Author(s):  
XINGANG BAI ◽  
XIANG GOU ◽  
WENCHUN WANG ◽  
CHAO DONG ◽  
FANGXU QUE ◽  
...  

The objective of this research was to evaluate the effectiveness and safety of Lower Extremity Exoskeleton Robot improving walking function and activity in patients with complete spinal cord injury. A prospective, open and self-controlled trial was conducted which include eight patients with complete spinal cord injury accepted Lower Extremity Exoskeleton Robot training with Aider 1.0 and Aider 1.1 for 2 weeks. The 6[Formula: see text]min Walk Test (6MWT), 10[Formula: see text]m Walk Test (10 MWT), Hoffer walking ability rating, Lower Extremity Motor Score (LEMS), Spinal Cord Independence Motor (SCIM), Walking Index for Spinal Cord Injury Version II (WISCI II) were recorded before, 1 week and 2 weeks after training. During the training, the incidence of adverse events (AE), the incidence of serious adverse events (SAE), the incidence of device defects and other safety indicators were observed. Compared with the pre-training, indicators (6MWT, 10MWT, Hoffer walking ability rating, WISCI II) were significantly different after 1 week of training and after 2 weeks of training. Four adverse events occurred during the training period and the incidence of adverse events was 50%. And there was no SAE or device defects. Therefore, it is safe and effective to use the lower extremity exoskeleton robot to complete the walking ability of patients with complete spinal cord injury.


2017 ◽  
Vol Volume 10 ◽  
pp. 1391-1394 ◽  
Author(s):  
Mengye Zhu ◽  
Fuqing Zhou ◽  
Lingchao Li ◽  
Qin Yin ◽  
Mizhen Qiu ◽  
...  

2017 ◽  
Vol 41 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Edward D. Lemaire ◽  
Andrew J. Smith ◽  
Andrew Herbert-Copley ◽  
Vidya Sreenivasan

Spinal Cord ◽  
2005 ◽  
Vol 43 (8) ◽  
pp. 476-482 ◽  
Author(s):  
T E Johnston ◽  
M N Greco ◽  
J P Gaughan ◽  
B T Smith ◽  
R R Betz

2012 ◽  
Vol 29 (5) ◽  
pp. 915-924 ◽  
Author(s):  
Douglas M. Wallace ◽  
Bruce H. Ross ◽  
Christine K. Thomas

2017 ◽  
Vol 41 (6) ◽  
pp. 676-683 ◽  
Author(s):  
Lukas Grassner ◽  
Barbara Klein ◽  
Doris Maier ◽  
Volker Bühren ◽  
Matthias Vogel

Sign in / Sign up

Export Citation Format

Share Document