scholarly journals Features modeling with an α-stable distribution: Application to pattern recognition based on continuous belief functions

2013 ◽  
Vol 14 (4) ◽  
pp. 504-520 ◽  
Author(s):  
Anthony Fiche ◽  
Jean-Christophe Cexus ◽  
Arnaud Martin ◽  
Ali Khenchaf
2014 ◽  
Vol 977 ◽  
pp. 349-352 ◽  
Author(s):  
Gang Yu ◽  
Jian Kang

As one of the most important type of machinery, rotating machinery may malfunction due to various reasons. Sometimes the fault is a single one, but sometimes it maybe in multi-fault condition, this paper mainly focus on the latter. First, the paper gives a brief introduction of the study on multi-fault, then it introduces the mixture of Alpha stable distribution model, besides, it gives the model parameters estimation algorithm in detail, at last we use the SOM net to complete pattern recognition. The results prove that this modeling method is effective in multi-fault diagnosis in rotating machinery.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
L. Fei ◽  
P. Fraundorf

Interface structure is of major interest in microscopy. With high resolution transmission electron microscopes (TEMs) and scanning probe microscopes, it is possible to reveal structure of interfaces in unit cells, in some cases with atomic resolution. A. Ourmazd et al. proposed quantifying such observations by using vector pattern recognition to map chemical composition changes across the interface in TEM images with unit cell resolution. The sensitivity of the mapping process, however, is limited by the repeatability of unit cell images of perfect crystal, and hence by the amount of delocalized noise, e.g. due to ion milling or beam radiation damage. Bayesian removal of noise, based on statistical inference, can be used to reduce the amount of non-periodic noise in images after acquisition. The basic principle of Bayesian phase-model background subtraction, according to our previous study, is that the optimum (rms error minimizing strategy) Fourier phases of the noise can be obtained provided the amplitudes of the noise is given, while the noise amplitude can often be estimated from the image itself.


1989 ◽  
Vol 34 (11) ◽  
pp. 988-989
Author(s):  
Erwin M. Segal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document