Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction

2015 ◽  
Vol 29 (2) ◽  
pp. 937-946 ◽  
Author(s):  
Han Liu ◽  
Xiu Yu ◽  
Sulan Yu ◽  
Junping Kou
Blood ◽  
2020 ◽  
Vol 136 (6) ◽  
pp. 749-754
Author(s):  
Joel James ◽  
Anup Srivastava ◽  
Mathews Valuparampil Varghese ◽  
Cody A. Eccles ◽  
Marina Zemskova ◽  
...  

Abstract Several studies demonstrate that hemolysis and free heme in circulation cause endothelial barrier dysfunction and are associated with severe pathological conditions such as acute respiratory distress syndrome, acute chest syndrome, and sepsis. However, the precise molecular mechanisms involved in the pathology of heme-induced barrier disruption remain to be elucidated. In this study, we investigated the role of free heme in the endothelial barrier integrity and mechanisms of heme-mediated intracellular signaling of human lung microvascular endothelial cells (HLMVECs). Heme, in a dose-dependent manner, induced a rapid drop in the endothelial barrier integrity of HLMVECs. An investigation into barrier proteins revealed that heme primarily affected the tight junction proteins zona occludens-1, claudin-1, and claudin-5, which were significantly reduced after heme exposure. The p38MAPK/HSP27 pathway, involved in the regulation of endothelial cytoskeleton remodeling, was also significantly altered after heme treatment, both in HLMVECs and mice. By using a knockout (KO) mouse for MKK3, a key regulator of the p38MAPK pathway, we showed that this KO effectively decreased heme-induced endothelial barrier dysfunction. Taken together, our results indicate that targeting the p38MAPK pathway may represent a crucial treatment strategy in alleviating hemolytic diseases.


2008 ◽  
Vol 74 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Robert Fürst ◽  
Martin F. Bubik ◽  
Peter Bihari ◽  
Bettina A. Mayer ◽  
Alexander G. Khandoga ◽  
...  

2019 ◽  
Vol 53 ◽  
pp. 246-255 ◽  
Author(s):  
Pratap Karki ◽  
Angelo Meliton ◽  
Albert Sitikov ◽  
Yufeng Tian ◽  
Tomomi Ohmura ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ting He ◽  
Liping Zhao ◽  
Dongxia Zhang ◽  
Qiong Zhang ◽  
Jiezhi Jia ◽  
...  

Endothelial barrier dysfunction, which is a serious problem that occurs in various inflammatory conditions, permits extravasation of serum components into the surrounding tissues, leading to edema formation and organ failure. Pigment epithelium-derived factor (PEDF), which is a major endogenous antagonist, has been implicated in diverse biological process, but its role in endothelial barrier dysfunction has not been defined. To assess the role of PEDF in the vasculature, we evaluated the effects of exogenous PEDF using human umbilical vein endothelial cells (HUVECs)in vitro. Our results demonstrated that exogenous PEDF activated p38/MAPK signalling pathway in a dose- and time-dependent manner and induced vascular hyperpermeability as measured by the markedly increased FITC-dextran leakage and the decreased transendothelial electrical resistance (TER) across the monolayer cells, which was accompanied by microtubules (MTs) disassembly and F-actin rearrangement. However, the aforementioned alterations can be arrested by the application of low concentration of p38/MAPK inhibitor SB203580. These results reveal a novel role for PEDF as a potential vasoactive substance in inducing hyperpermeability. Furthermore, our results suggest that PEDF and p38/MAPK may serve as therapeutic targets for maintaining vascular integrity.


Sign in / Sign up

Export Citation Format

Share Document