scholarly journals Satellite-derived rainfall thresholds for landslide early warning in Bogowonto Catchment, Central Java, Indonesia

Author(s):  
Elias E. Chikalamo ◽  
Olga C. Mavrouli ◽  
Janneke Ettema ◽  
Cees J. van Westen ◽  
Agus S. Muntohar ◽  
...  
Author(s):  
Ascanio Rosi ◽  
Samuele Segoni ◽  
Vanessa Canavesi ◽  
Antonio Monni ◽  
Angela Gallucci ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Samuele Segoni ◽  
Ascanio Rosi ◽  
Daniela Lagomarsino ◽  
Riccardo Fanti ◽  
Nicola Casagli

Abstract. We communicate the results of a preliminary investigation aimed at improving a state-of-the-art RSLEWS (regional-scale landslide early warning system) based on rainfall thresholds by integrating mean soil moisture values averaged over the territorial units of the system. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are not expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods are substituted with soil moisture thresholds. A back analysis demonstrated that both approaches consistently reduced false alarms, while the second approach reduced missed alarms as well.


2021 ◽  
Author(s):  
Pierpaolo Distefano ◽  
David J. Peres ◽  
Pietro Scandura ◽  
Antonino Cancelliere

Abstract. In this communication we show how the use of artificial neural networks (ANNs) can improve the performance of the rainfall thresholds for landslide early warning. Results for Sicily (Italy), show how performance of a traditional rainfall event duration and depth power law threshold, yielding a true skill statistic (TSS) of 0.50, can be improved by ANNs (TSS = 0.59). Then we show how ANNs allow to easily add other variables, like peak rainfall intensity, with a further performance improvement (TSS = 0.64). This may stimulate more research on the use of this powerful tool for deriving landslide early warning thresholds.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2611 ◽  
Author(s):  
Minu Treesa Abraham ◽  
Neelima Satyam ◽  
Biswajeet Pradhan ◽  
Abdullah M. Alamri

In hilly areas across the world, landslides have been an increasing menace, causing loss of lives and properties. The damages instigated by landslides in the recent past call for attention from authorities for disaster risk reduction measures. Development of an effective landslide early warning system (LEWS) is an important risk reduction approach by which the authorities and public in general can be presaged about future landslide events. The Indian Himalayas are among the most landslide-prone areas in the world, and attempts have been made to determine the rainfall thresholds for possible occurrence of landslides in the region. The established thresholds proved to be effective in predicting most of the landslide events and the major drawback observed is the increased number of false alarms. For an LEWS to be successfully operational, it is obligatory to reduce the number of false alarms using physical monitoring. Therefore, to improve the efficiency of the LEWS and to make the thresholds serviceable, the slopes are monitored using a sensor network. In this study, micro-electro-mechanical systems (MEMS)-based tilt sensors and volumetric water content sensors were used to monitor the active slopes in Chibo, in the Darjeeling Himalayas. The Internet of Things (IoT)-based network uses wireless modules for communication between individual sensors to the data logger and from the data logger to an internet database. The slopes are on the banks of mountain rivulets (jhoras) known as the sinking zones of Kalimpong. The locality is highly affected by surface displacements in the monsoon season due to incessant rains and improper drainage. Real-time field monitoring for the study area is being conducted for the first time to evaluate the applicability of tilt sensors in the region. The sensors are embedded within the soil to measure the tilting angles and moisture content at shallow depths. The slopes were monitored continuously during three monsoon seasons (2017–2019), and the data from the sensors were compared with the field observations and rainfall data for the evaluation. The relationship between change in tilt rate, volumetric water content, and rainfall are explored in the study, and the records prove the significance of considering long-term rainfall conditions rather than immediate rainfall events in developing rainfall thresholds for the region.


Author(s):  
Samuele Segoni ◽  
Ascanio Rosi ◽  
Daniela Lagomarsino ◽  
Riccardo Fanti ◽  
Nicola Casagli

Abstract. We improved a state-of-art RSLEWS (regional scale landslide early warning system) based on rainfall thresholds by integrating punctual soil moisture estimates. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are never expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods were substituted by soil moisture thresholds. A back analysis demonstrated that both approaches reduced consistently false alarms, while the second approach reduced missed alarms as well.


Sign in / Sign up

Export Citation Format

Share Document