scholarly journals Prediction of insect-herbivory-damage and insect-type attack in maize plants using hyperspectral data

Author(s):  
Danielle Elis Garcia Furuya ◽  
Lingfei Ma ◽  
Mayara Maezano Faita Pinheiro ◽  
Felipe David Georges Gomes ◽  
Wesley Nunes Gonçalvez ◽  
...  
Author(s):  
Danielle Elis Garcia Furuya ◽  
Mayara Maezano Faita Pinheiro ◽  
Felipe David Georges Gomes ◽  
Wesley Nunes Gonçalves ◽  
José Marcato Júnior ◽  
...  

A strategy to reduce qualitative and quantitative losses in crop-yields refers to early and accurate detection of insect-damage caused in plants. Remote sensing systems like hyperspectral proximal sensors are a promising strategy for managing crops. In this aspect, machine learning predictions associated with clustering techniques may be an interesting approach mainly because of its robustness to evaluate high dimensional data. In this paper, we model the spectral response of insect-herbivory-damage in maize plants and propose an approach based on machine learning and a clustering method to predict whether the plant is herbivore-attacked or not using leaf reflectance measurements. We differentiate insect-type damage based on the spectral response and indicate the most contributive wavelengths to perform it. For this, we used a maize experiment in semi-field conditions. The maize plants were submitted to three different treatments: control (health plants); plants submitted to Spodoptera frugiperda herbivory-damage, and; plants submitted to Dichelops melacanthus herbivory-damage. The leaf spectral response of all plants (controlled and submitted to herbivory) was measured with a FieldSpec 3.0 Spectroradiometer from 350 to 2500 nm for eight consecutive days. We evaluated the performance of different learners like random forest (RF), support vector machine (SVM), extreme gradient boost (XGB), neural networks (MLP), and measured the impact of a day-by-day analysis into the prediction. We proposed a novel framework with a ranking strategy, based on the accuracy returned by predictions, and a clusterization method based on a self-organizing map (SOM) to identify important regions in the reflectance measurement. Our results indicated that the RF-based framework algorithm is the overall best learner to deal with this type of data. After the 5th day of analysis, the accuracy of the algorithm improved substantially. It separated the three treatments into different groups with an F-measure equal to 0.967, 0.917, and 0.881, respectively. We also verified that the most contributive spectral regions are situated in the near-infrared domain. We conclude that the proposed approach with machine learning methods is adequate to monitor herbivory-damage of S. frugiperda and stink bugs like Dichelops melacanthus in maize, differentiating the types of insect-attack early on. We also demonstrate that the framework proposed for the analysis of the most contributive wavelengths is suitable to highlight spectral regions of interest.


1991 ◽  
Vol 82 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Gabor J. Bethlenfalvay ◽  
Maria G. Reyes-Solis ◽  
Susan B. Camel ◽  
Ronald Ferrera-Cerrato

2019 ◽  
Author(s):  
M Maktabi ◽  
H Köhler ◽  
R Thieme ◽  
JP Takoh ◽  
SM Rabe ◽  
...  

2010 ◽  
Vol 69 (6) ◽  
pp. 537-563 ◽  
Author(s):  
N. N. Ponomarenko ◽  
M. S. Zriakhov ◽  
A. Kaarna

2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


Sign in / Sign up

Export Citation Format

Share Document