High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane

2019 ◽  
Vol 773 ◽  
pp. 950-954 ◽  
Author(s):  
Hsin-Ying Lee ◽  
Yung-Ching Heish ◽  
Ching-Ting Lee
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sweejiang Yoo ◽  
Xin Li ◽  
Yuan Wu ◽  
Weihua Liu ◽  
Xiaoli Wang ◽  
...  

Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide (rGOTA functionalized). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties ofrGOTA functionalized. Our results showrGOTA functionalizedonly selective to ammonia with excellent respond, recovery, respond time, and recovery times.rGOTA functionalizedelectrical resistance decreases upon exposure to NH3where we postulated that it is due to n-doping by TA and charge transfer betweenrGOTA functionalizedand NH3through hydrogen bonding. Furthermore,rGOTA functionalizedhinders the needs for stimulus for both recovery and respond. The combination of greener sensing material and simplicity in overall sensor design provides a new sight for green reductant approach of rGO based chemiresistor gas sensor.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37085-37092 ◽  
Author(s):  
Ying Yang ◽  
Li Sun ◽  
Xiangting Dong ◽  
Hui Yu ◽  
Tingting Wang ◽  
...  

Fe3O4nanoparticles-decorated reduced graphene oxide nanocomposites have been successfully synthesized using solvothermal-pyrolytic method. They have superior gas sensing performance with low detection limit, high sensitivity and short response time.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Roselle T. Ngaloy ◽  
Aixeen M. Fontanilla ◽  
Ma. S. Rebecca Soriano ◽  
Chelo S. Pascua ◽  
Yoshitaka Matsushita ◽  
...  

We synthesized zinc oxide-reduced graphene oxide (ZnO-rGO) composites using a one-pot chemical deposition method at room temperature. Zinc powder and graphene oxide (GO) of different mass ratios (1 : 1, 1 : 2, 1 : 5, 1 : 10, and 1 : 20 GO to Zn) were used as precursors in a mildly alkaline solution. UV-Vis spectroscopy was used to study the photocatalytic efficiency of the samples through the photodegradation of methylene blue (MB). UV-Vis measurements show the fast decomposition of methylene blue under UV light illumination with the best degradation efficiency of 97.7% within one hour, achieved with sample ZG2 (1 GO : 2 Zn mass ratio). The corresponding degradation rate was kZG2 = 0.1253 min−1, which is at least 5.5 times better than other existing works using hydrothermal methods. We argue that the excellent photodegradation of MB by ZG2 is due to the efficient charge separation brought about by the electronic interaction of the rGO with the ZnO and the formation of a Zn-O-C bond, as supported by XRD and Raman spectroscopy measurements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue-Yu Zhang ◽  
Ren-Hao Ma ◽  
Ling-Sheng Li ◽  
Li Fan ◽  
Yue-Tao Yang ◽  
...  

AbstractIt is challenging to increase the sensitivity of a hydrogen sensor operating at room temperature due to weak sorption and tiny mass of hydrogen. In this work, an ultrasonic sensor is presented for detecting hydrogen, which is composed of a 128° YX-LiNbO3 substrate and a reduced graphene oxide (RGO) sensitive layer with a platinum catalyzer. By optimizing the depositing parameters of RGO and platinum, a considerably high sensitivity is achieved at room temperature. A frequency shift of 308.9 kHz is obtained in 100 ppm hydrogen mixed with argon, and a frequency shift of 24.4 kHz is obtained in 1000 ppm hydrogen mixed in synthetic air. It is demonstrated that in addition to strong sorption of the sensitive layer, the coaction of mass load and conductivity variation is key to high sensitivity of the sensor. By establishing the original conductivity of the sensitive layer within the “conductivity window” for enhancing electrical response, we improve the sensitivity of the ultrasonic sensor, which is available for detecting hydrogen with an extremely low concentration of 5 ppm.


2015 ◽  
Vol 221 ◽  
pp. 1290-1298 ◽  
Author(s):  
Xian Li ◽  
Jing Wang ◽  
Dan Xie ◽  
Jianlong Xu ◽  
Ruixuan Dai ◽  
...  

2017 ◽  
Vol 5 (27) ◽  
pp. 6862-6871 ◽  
Author(s):  
Jing Hu ◽  
Cheng Zou ◽  
Yanjie Su ◽  
Ming Li ◽  
Nantao Hu ◽  
...  

A room-temperature NO2 gas sensor of high sensitivity, selectivity and stability based on a low-cost, all-carbon nanoscale heterostructure and eco-friendly 2D rGO–CD hybrids.


Sign in / Sign up

Export Citation Format

Share Document