Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions

2018 ◽  
Vol 126 (5) ◽  
pp. 596-602 ◽  
Author(s):  
Kenichi Ogawa ◽  
Katsunori Yoshikawa ◽  
Fumio Matsuda ◽  
Yoshihiro Toya ◽  
Hiroshi Shimizu
PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45139 ◽  
Author(s):  
Waqar Majeed ◽  
Yan Zhang ◽  
Yong Xue ◽  
Saurabh Ranade ◽  
Ryan Nastashia Blue ◽  
...  

2008 ◽  
Vol 191 (5) ◽  
pp. 1581-1586 ◽  
Author(s):  
Yurie Seino ◽  
Tomoko Takahashi ◽  
Yukako Hihara

ABSTRACT The coordinated high-light response of genes encoding subunits of photosystem I (PSI) is achieved by the AT-rich region located just upstream of the core promoter in Synechocystis sp. strain PCC 6803. The upstream element enhances the basal promoter activity under low-light conditions, whereas this positive regulation is lost immediately after the shift to high-light conditions. In this study, we focused on a high-light regulatory 1 (HLR1) sequence included in the upstream element of every PSI gene examined. A gel mobility shift assay revealed that a response regulator RpaB binds to the HLR1 sequence in PSI promoters. Base substitution in the HLR1 sequence or decrease in copy number of the rpaB gene resulted in decrease in the promoter activity of PSI genes under low-light conditions. These observations suggest that RpaB acts as a transcriptional activator for PSI genes. It is likely that RpaB binds to the HLR1 sequence under low-light conditions and works for positive regulation of PSI genes and for negative regulation of high-light-inducible genes depending on the location of the HLR1 sequence within target promoters.


2007 ◽  
Vol 189 (7) ◽  
pp. 2750-2758 ◽  
Author(s):  
Masayuki Muramatsu ◽  
Yukako Hihara

ABSTRACT Genes encoding subunits of photosystem I (PSI genes) in the cyanobacterium Synechocystis sp. strain PCC 6803 are actively transcribed under low-light conditions, whereas their transcription is coordinately and rapidly down-regulated upon the shift to high-light conditions. In order to identify the molecular mechanism of the coordinated high-light response, we searched for common light-responsive elements in the promoter region of PSI genes. First, the precise architecture of the psaD promoter was determined and compared with the previously identified structure of the psaAB promoter. One of two promoters of the psaAB genes (P1) and of the psaD gene (P2) possessed an AT-rich light-responsive element located just upstream of the basal promoter region. These sequences enhanced the basal promoter activity under low-light conditions, and their activity was transiently suppressed upon the shift to high-light conditions. Subsequent analysis of psaC, psaE, psaK1, and psaLI promoters revealed that their light response was also achieved by AT-rich sequences located at the −70 to −46 region. These results clearly show that AT-rich upstream elements are responsible for the coordinated high-light response of PSI genes dispersed throughout Synechocystis genome.


Sign in / Sign up

Export Citation Format

Share Document