scholarly journals Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning

2022 ◽  
Vol 606 ◽  
pp. 961-970 ◽  
Author(s):  
Ling Wang ◽  
Yanfei Gao ◽  
Junpeng Xiong ◽  
Weili Shao ◽  
Chen Cui ◽  
...  
Holzforschung ◽  
2016 ◽  
Vol 70 (5) ◽  
pp. 439-447 ◽  
Author(s):  
Ru Liu ◽  
Shupin Luo ◽  
Jinzhen Cao ◽  
Yu Chen

Abstract Wood flour/polylactic acid (WF/PLA) composites were produced with a WF content of 50% based on three types of waterborne polyacrylate (PA) emulsions including a PA homopolymer emulsion and two types of silane-PA copolymer emulsions as coupling agents. Two silanes were in focus, namely, γ-methacryloxypropyl- trimethoxysilane (silane-1) and vinyltrimethoxysilane (silane-2). The emulsions and the modified WFs were characterized, and the effects were investigated in terms of emulsion type and their loading levels on the mechanical properties of WF/PLA composites. (1) Both types of silanes could be successfully copolymerized with PA to form stable emulsions. (2) With increasing PA loading, the mechanical properties (except for flexural modulus) of the composites increased at first before reaching the maximum values at 4% PA loading and then the properties worsened. However, these values were larger than those of pure composites, especially in cases when PA-silane emulsions were applied. (3) PA modified with silane-1 showed the best coupling effect among all the three PA emulsions. The results can be interpreted that PA emulsions are effective coupling agents for the preparation of high-performance WPCs.


2021 ◽  
pp. 101042
Author(s):  
Tairong Kuang ◽  
Maolin Zhang ◽  
Xinghan Lian ◽  
Jingbing Zhang ◽  
Tong Liu ◽  
...  

2012 ◽  
Vol 10 (1) ◽  
pp. 649-651 ◽  
Author(s):  
Jing Wei ◽  
Jingyan Liu ◽  
Jing Qiang ◽  
Lina Yang ◽  
Yuqin Wan ◽  
...  

2014 ◽  
Vol 86 (4) ◽  
pp. 519-523 ◽  
Author(s):  
Caspar Paetz ◽  
Rainer Hagen

2012 ◽  
Vol 22 (31) ◽  
pp. 15732 ◽  
Author(s):  
Lin Xiao ◽  
Yiyong Mai ◽  
Feng He ◽  
Longjiang Yu ◽  
Limin Zhang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4557
Author(s):  
Mitul Patel ◽  
Daniel Schwendemann ◽  
Giorgia Spigno ◽  
Shiyu Geng ◽  
Linn Berglund ◽  
...  

The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film’s optical properties; microstructure; migration of the additive and nanocomposites’ thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.


2013 ◽  
Vol 739 ◽  
pp. 38-41
Author(s):  
Yi Chen ◽  
Yue Peng ◽  
Wen Yong Liu ◽  
Guang Sheng Zeng ◽  
Xiang Gang Li ◽  
...  

Polycarbonate/poly (lactic acid)/(PC/PLA) blend is a kind of novel potential material for introducing the degradability of PLA to high performance PC. However, the bad compatibility between PC and PLA results in poor impact resistance and strength, which limits its applications. For resolving the problem, linear low density polyethylene (LLDPE) was added into blend to improve the mechanical properties, especially the toughness. Meantime, nanosized montmorillonite was also used as an additive for modifying the blend. The results showed that the the tensile and impact strength, the elongation at break of PC/PLA all be improved with the increase of LLDPE, the nanosized montmorillonite could also increase the strength of blends when the content is lower than wt5% of blends.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4456
Author(s):  
Tomaž Pepelnjak ◽  
Ako Karimi ◽  
Andraž Maček ◽  
Nikolaj Mole

In designing high-performance, lightweight components, cellular structures are one of the approaches to be considered. The present study aimed to analyze the effect of the infill line distance of 3D printed circular samples on their compressive elastic behavior. Lightweight cellular poly-lactic acid (PLA) samples with a triangular infill pattern were exposed to cyclic compressive loading and their stiffness was investigated. PLA is one of the most commonly used thermoplastic materials in additive manufacturing using the fused filament fabrication (FFF) process. Cylindrical samples with a diameter of 11.42 mm and a height of 10 mm were printed using FFF technology with two different infill line distances (1.6 mm and 2.4 mm). Comparing the nominal compressive stress-nominal strain curves under cyclic loading showed that the first cycle response was significantly different with respect to the subsequent ones. Furthermore, an analysis of the dependence of the modulus of elasticity on the effects of cyclic loading was performed. It was found that through elastic deformation, and combined elastic and plastic deformation, the samples’ properties such as stiffness could be altered.


Sign in / Sign up

Export Citation Format

Share Document