A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network

2020 ◽  
Vol 243 ◽  
pp. 118671 ◽  
Author(s):  
Wei Sun ◽  
Chenchen Huang
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1328
Author(s):  
Jianguo Zhou ◽  
Shiguo Wang

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.


2020 ◽  
Vol 63 (4) ◽  
pp. 1071-1077
Author(s):  
Chenyang Sun ◽  
Lusheng Chen ◽  
Yinian Li ◽  
Hao Yao ◽  
Nan Zhang ◽  
...  

HighlightsWe propose five spraying parameters according to the characteristics of pig carcasses in the spray-chilling process.A prediction model for pig carcass weight loss, based on a genetic algorithm back-propagation neural network, is proposed to reveal the relationship between weight loss and spraying parameters.To study the effects of various spraying parameters on weight loss, an automatic spray-chilling device was designed, which can modify up to five spraying parameters.Abstract. Because the weight loss of a pig carcass in the spray-chilling process is easily affected by the spraying frequency and duration, a prediction model for weight loss based on a genetic algorithm (GA) back-propagation (BP) neural network is proposed in this article. With three-way crossbred pig carcasses selected as the test materials, the duration and time interval of high-frequency spraying, the duration and time interval of low-frequency spraying, and the duration of a single spray were selected as inputs to the network model. The weight and threshold of the network were then optimized by the GA. The prediction model for pig carcass weight loss established by the GA BP neural network yielded a correlation coefficient of R = 0.99747 between the network output value of the test samples and the target value. Weight loss prediction by the model is feasible and allows better expression of the nonlinear relationship between weight loss and the main controlling factors. The results can be a reference for chilled meat production. Keywords: BP neural network, Genetic algorithm, Pig carcass, Predictive model, Weight loss


2014 ◽  
Vol 1006-1007 ◽  
pp. 1031-1034
Author(s):  
Li Zhang ◽  
Qing Yang Xu ◽  
Chao Chen ◽  
Zeng Jun Bao

The stock market is a nonlinear dynamics system with enormous information, which is difficult to predict effectively by traditional methods. The model of stock price forecast based on BP Neutral-Network is put forward in this article. The paper try to find the way how to predictive the stock price. Exhaustive method is used for the hidden layer neurons and training method determination. Finally the experiment results show that the algorithm get better performance in stock price prediction.


Sign in / Sign up

Export Citation Format

Share Document